首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《化工译丛》2007,(3):17-19
全球50%以上的乙烯装置以石脑油为裂解原料。随着原油价格的提高,石脑油价格也相应提升。乙烯生产商避免使用芳烃含量高的石脑油原料,因为芳烃在裂解过程中不会增值。美国乙烯工业咨询公司介绍,通过芳烃抽提装置和石脑油加氢装置的集成,可从较重的原料中除去芳烃。对等外品石脑油(off—grade naphtha,OGN,即链烷烃含量小于65%的石脑油)进行预处理,可获得高品质的液态烯烃裂解原料。  相似文献   

2.
一、前言 中石化天津分公司100万t/a乙烯及配套项目新建100万t/a重整抽提装置以新建1000万t/a常减压装置生产的直馏重石脑油、新建180万t/a加氢裂化装置生产的加氢裂化重石脑油和乙烯装置生产的加氢乙烯裂解汽油(C6~C8馏分)为原料,主要生产苯、甲苯、混合二甲苯和高辛烷值汽油调合组分c9+馏分油,副产重整氢气、C5馏分油、抽余油、液化石油气、燃料气等。  相似文献   

3.
1)陕西延长石油(集团)有限责任公司榆林炼油厂,项目内容:榆林炼油厂20000m。/h制氢装置、20万t/aDCC裂解轻油加氢改质、20万t/a裂解石脑油加氢、苯抽提装置。其中,苯抽提装置为新增装置。项目进入工程设计阶段。主要设备:苯抽提装置抽提塔、汽提塔、水洗塔、水分馏塔等。  相似文献   

4.
杜彬 《山西化工》2013,(6):28-29,66
从反应系统工艺设备、产品组成、工艺及经济性角度对传统石脑油裂解制烯烃和甲醇制烯烃进行了对比分析.结果发现,甲醇取代石脑油作为烯烃原料具有较好的经济性和发展前景.  相似文献   

5.
1)陕西延长石油(集团)有限责任公司榆林炼油厂,项目内容:榆林炼油厂20 000 m3/h制氢装置、20万t/a DCC裂解轻油加氢改质、20万t/a裂解石脑油加氢、苯抽提装置。其中,苯抽提装置为新增装置。项目进入工程设计阶段。主要设备:苯抽提装置抽提塔、汽提塔、水洗塔、水分馏塔等。2)陕西延长石油榆林煤化公司,项目内容:15万t/a费托合成工艺装置;15万t/a合成气制油项目,是以一期20万t/a甲  相似文献   

6.
由烯烃合成芳烃的高产率节能工艺日本Sanyo石油化学公司(SPC)示范了一种把祖C4烯烃直接转化为苯、甲苯、二甲苯(BTX)混合物技术的商业可行性。该方法用来自石脑油裂解装置的副产轻馏分作原料,而通常这些馏分作为燃料烧掉。据报导,该法的产率大于95%...  相似文献   

7.
《工业催化》2012,(9):23-23
2012年7月29日,中国石油石油化工研究院研发的新型催化裂解石脑油两段加氢催化剂,在蓝星集团沈阳石蜡化工有限公司120 kt.a-1催化裂解石脑油加氢装置上应用成功。工业应用结果表明,装置运行稳定,催化剂完全满足了工业装置的要  相似文献   

8.
本文提出了以全馏分页岩油作为原料,经预处理、常减压蒸馏、加氢处理、产品分馏工艺单元生产催化热裂解原料,主产品为加氢精制蜡油,可作为后续催化热裂解装置的优质原料;副产品为高附加值的LPG、加氢石脑油、加氢柴油;工艺装置甩出的轻质页岩油和残油馏分可去下游进一步加工。该工艺可拓宽催化热裂解装置的原料来源,解决国内由于原料短缺造成催化热裂解装置开工率不足的问题;化解当前油页岩产业结构"大头小尾"和"油-化"结合度不足的难点,提升页岩油炼化一体化的能力。  相似文献   

9.
作为重要的基础化学品之一,石油苯的工业生产过程在芳烃抽提装置实现,其大部分原料来自裂解汽油加氢装置,约占石油苯产品的50%以上。随着化学工业水平的快速发展,化工市场对苯产品的硫含量要求越来越高,苯产品中硫形态主要以噻吩的形式存在,可以用总硫含量近似表征产品中噻吩含量。因噻吩与苯的物理性质类似,工业生产中很难以精馏的方式将二者分离,大部分以加氢脱硫方式实现。通过分析裂解汽油加氢脱噻吩化学反应过程,对比不同工艺条件下加氢汽油产品中的总硫含量,得出在现有技术及工艺条件下能够满足产品中硫含量的最佳操作条件。  相似文献   

10.
粗异戊烯产自浙石化50万t/a裂解C5分离装置,年产8.8万t/a,粗异戊烯经过加氢后可作为汽油、乙烯原料或与甲醇反应生成高纯度的异戊烯。浙石化粗异戊烯可通过石脑油加氢装置、汽油加氢装置、S-Zorb装置加工。在石脑油加氢装置加工时,粗异戊烯进入拔头油作为乙烯原料送乙烯,解决了粗异戊烯因烯烃含量高不能直接送乙烯加工的问题;在汽油加氢装置加工时,粗异戊烯作为轻汽油馏分送至汽油醚化装置与甲醇反应,增加了工艺附加值;在S-Zorb装置加工时,由于粗异戊烯中的二烯烃自聚,使原料/反应产物换热器管程堵塞,造成偏流及换热效果下降,不能长期加工。  相似文献   

11.
Hydro-thermal cracking of heavy oils and its model compound   总被引:2,自引:0,他引:2  
Liquid-phase cracking of vacuum gas oil (VGO) was performed over NiMo supported nonacidic catalysts under 713 K and 8.0 MPa of hydrogen in a batch reactor, which is termed hydro-thermal cracking. Compared with VGO thermal cracking under the same reaction conditions the new process showed the suppressed naphtha yield (from 22.4 to 13.5 wt.%) and VGO conversion (from 65.7 to 64.0 wt.%) and increased the middle distillate yield (from 44.3 to 49.3 wt.%). At the same conversion level, the yield ratio of middle distillates to naphtha for this new process was two times higher than that for VGO hydrocracking. The VGO hydrocracking over USY-supported NiMo proceeded at much lower temperatures but gave higher naphtha yields. Both the thermal cracking and the hydro-thermal cracking of n-dodecyl benzene (C6H5(CH2)11CH3) yielded toluene as the major aromatic product, whereas its hydrocracking over NiMo/USY yielded benzene as the major aromatic product. The reaction mechanism of this new process was assumed to consist of thermal cracking of hydrocarbon molecules via the free radical chain mechanism and the catalytic hydroquenching of free radicals.  相似文献   

12.
MOLECULAR MODELING AND OPTIMIZATION FOR CATALYTIC REFORMING   总被引:2,自引:0,他引:2  
In this paper, molecular modeling and optimization for the naphtha catalytic reforming process is studied. The catalytic reforming process is for producing high octane number gasoline by reforming reactions in three sequencing fixed bed reactors. Feed naphtha coming from an atmospheric distillation unit consisted of molecules from C5 to C10 including paraffin, iso-paraffin, naphthene, and aromatic. The molecular reaction network consisted of paraffin cracking, naphthene side-chain cracking, aromatic side-chain cracking, ring opening, ring closure, paraffin isomerization, dehydrogenation, and hydrogenation. A molecular model for catalytic reforming was built. On the basis of the simulation model, a process optimization was performed for feed temperature and pressure under constraints such as benzene content, aromatic content, and RON (Research Octane Number) limitations. High RON was contrasted to low benzene and aromatic content requirements. By optimizing and controlling the reaction pathway, we can obtain a final product with the highest profit and appropriate benzene and aromatic contents and RON value. This example shows significant benefits from applying molecular modeling to optimization in the process level. Since gasoline production is related to many different processes such as reforming, FCC, isomerization, alkylation, and so on, more benefits can be obtained by applying molecular modeling to plant-wide optimization.  相似文献   

13.
In this paper, molecular modeling and optimization for the naphtha catalytic reforming process is studied. The catalytic reforming process is for producing high octane number gasoline by reforming reactions in three sequencing fixed bed reactors. Feed naphtha coming from an atmospheric distillation unit consisted of molecules from C5 to C10 including paraffin, iso-paraffin, naphthene, and aromatic. The molecular reaction network consisted of paraffin cracking, naphthene side-chain cracking, aromatic side-chain cracking, ring opening, ring closure, paraffin isomerization, dehydrogenation, and hydrogenation. A molecular model for catalytic reforming was built. On the basis of the simulation model, a process optimization was performed for feed temperature and pressure under constraints such as benzene content, aromatic content, and RON (Research Octane Number) limitations. High RON was contrasted to low benzene and aromatic content requirements. By optimizing and controlling the reaction pathway, we can obtain a final product with the highest profit and appropriate benzene and aromatic contents and RON value. This example shows significant benefits from applying molecular modeling to optimization in the process level. Since gasoline production is related to many different processes such as reforming, FCC, isomerization, alkylation, and so on, more benefits can be obtained by applying molecular modeling to plant-wide optimization.  相似文献   

14.
催化裂解与传统的高温蒸汽裂解相比,通过催化剂降低催化裂解反应活化能和反应温度,除生产乙烯、丙烯和丁烯等主要化工原料外,还副产一定量的轻质芳烃。分析催化裂解石脑油,结果表明,催化裂解石脑油主要为C5~C9馏分,芳烃质量分数62.97%,苯、甲苯和二甲苯质量分数54.38%,与全馏分裂解汽油相当,是优质的抽提芳烃原料。提出对原料进行预处理后,经两段加氢、产品抽提芳烃的利用路线,并在试验室采用切割塔及等温床完成对原料的预处理,制取满足两段加氢要求的原料。在一段入口温度(45~55) ℃、反应压力2.8 MPa、氢油体积比100∶1、液时空速1.5 h-1和二段入口温度(250~255) ℃、反应压力2.8 MPa、氢油体积比600∶1和液时空速1.5 h-1条件下,对一段和二段进行1 000 h的加氢评价试验,结果表明,一段加氢后产品双烯值均<2.5 g-I·(100g油)-1,二段加氢产品溴价<1.0 g-Br·(100g油)-1,硫含量<1.0 μg·g-1,满足芳烃抽提对原料烯烃及硫含量的要求。  相似文献   

15.
高温煤焦油悬浮床加氢裂化研究   总被引:2,自引:0,他引:2  
黄澎 《洁净煤技术》2011,17(3):61-63
利用悬浮床加氢对高温煤焦油进行加氢裂化研究。分析了煤焦油的性质,研究了反应条件对产物分布的影响。结果表明,随着温度的升高和时间的延长,反应裂解程度加深,反应生成更多的气体、石脑油和柴油馏分,同时甲苯不溶物的含量也在增高。反应压力低于15MPa,提高压力,汽柴油馏分产率提高显著,反应高于15MPa汽柴油产率提高不明显,甲苯不溶物含量显著提高。  相似文献   

16.
裂解碳九加氢利用技术进展   总被引:8,自引:2,他引:6  
系统总结了裂解碳九(C9)来源、组成及其综合利用情况;指出裂解碳九加氢技术是裂解碳九综合利用的核心和关键技术;详述了裂解碳九加氢生产高品质芳烃溶荆油或调和油、裂解碳九闪蒸油加氢生产溶剂油及全加氢裂解碳九加氢轻质化增产BTX;重点分析了裂解碳九加氢工艺和催化剂技术,强调了原料预处理、反应工艺和催化剂设计等要点.  相似文献   

17.
The fluid catalytic cracking (FCC) naphtha critical component-oriented separation process is an efficient method to produce ultra-low-sulfur (<10 μg/g) gasoline with minimal loss of octane number (<1 RON). However, the product quality is highly dependent on the structure of the components of FCC naphtha. Aromatics and thiophene sulfides without a methyl side chain favor the separation of olefin. The major impulse of olefin separation is the solvent-induced dipole of aromatics or thiophene sulfides, leading to a “Plane-to-Plane” combination between the solvent and aromatics or thiophene sulfides, accompanied by a steric hindrance due to their side chains. This condition resulted in 2–3 times greater θ of benzene and thiophene compared with that of toluene and 3-methylthiophene. In addition, an improved non-random two-liquid model was proposed based on the above results, and a simulation method for FCC naphtha solvent extraction process was established. The calculation results accorded well with industry data.  相似文献   

18.
采用模拟裂解评价装置对直馏石脑油、芳烃抽余油、焦化加氢石脑油在不同的反应温度(COT)、不同m(水):m(油)条件下进行裂解评价,结果表明在相同温度下随着m(水):m(油)的提高,目的产品双烯及三烯收率都上升;在相同m(水):m(油)条件下,随着反应温度的提高,双烯及三烯目的产品收率也相应上升。通过评价得出:直馏石脑油适宜在相对较高温度下裂解,而焦化加氢石脑油适宜在相对较低的温度下裂解,芳烃抽余油裂解性能适中。  相似文献   

19.
针对当前对溶剂油中苯含量的严格要求,研究负载型骨架镍催化剂在轻质石脑油加氢脱苯反应过程中的加氢性能,并考察反应温度、反应压力、空速以及氢油体积比等对轻质石脑油加氢脱苯反应的影响。结果表明,骨架镍催化剂具有较高的低温加氢活性,适宜条件为:反应温度140℃,反应压力0.2 MPa,空速2 h~(-1),氢油体积比120,此条件下,苯转化率达到99%。  相似文献   

20.
利用小型固定床实验装置对比研究了轻烃模型化合物的催化裂解性能,从优到劣的顺序依次是正构烯烃、正构烷烃、环烷烃、异构烷烃、芳香烃。正构烷烃、异构烷烃与环烷烃催化裂解的总低碳烯烃收率有较大差别,但是总低碳烯烃选择性却均在56.57%左右。研究了直馏石脑油的催化裂解性能,发现乙丙烯收率和总低碳烯烃收率随反应温度的升高及重时空速的降低而逐渐增大;在反应温度680℃、重时空速4.32 h-1和水油稀释比0.35的条件下,乙丙烯收率35.87%(质量),总低碳烯烃收率为41.94%(质量)。针对轻烃催化裂解提出了原料特征化参数KF,它是原料H/C原子比、相对密度与分子量的函数,能较好地表征轻烃原料的催化裂解性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号