首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The superiority of perpendicular recording derives from the very low demagnetization at high bit densities, and from the nearly perfect writing process when a single pole head is used in combination with a double layer medium. Recent experiments have shown that it is possible to record very high densities in the longitudinal recording mode by scaling down all the critical parameters to extremely small values. However, such extreme scaling will very likely be accompanied by some very difficult problems from the point of view of media imperfections, defects, yields and costs. The power of perpendicular recording derives in part from the ability to attain these very high bit densities without resort to extreme scaling of the critical system parameters. There is little doubt that in the long run perpendicular recording will predominate because of its superior performance derived from the advantages stated above. For the next several years, however, we have to look to new and improved particulate media (to satisfy the majority of the demands) which can be fabricated by using existing large capacity continuous web coating facilities. The best choice for satisfying the requirements of these tape-related large volume applications is to utilize the new particulate media which support a large degree of perpendicular magnetization (isotropic-high squareness, and perpendicular anisotropy particulate dispersions) rather than employing very high coercivity longitudianally optimized particulate media.  相似文献   

2.
The variation of demagnetization effects with media parameters for longitudinal contact recording has been investigated. Co-Re thin film metal media were sputtered onto flexible polyimide substrates. It was found that when the film thickness δ and demagnetizaton parameterB_{r}delta/H_{c}were less than 2 μ inch and 15 μinch, respectively, demagnetization-free longitudinal recording was obtained up to the recording density of 75 KFRPI at the head-to-medium spacing of 3 μ inch. As a result, recording densities of D50over 50 KFRPI were achieved with a 20 μinch gap head. For thicker films with larger demagnetization parameters, i.e.,delta geq 4 muinch andB_{r}delta/H_{c} geq 40 muinch, the longitudinal recording process approached the demagnetization limit. The results show that (with existing head field gradients) improvement in linear density of thin metal media can be obtained by an approximate factor of two before the demagnetization limit is reached.  相似文献   

3.
This paper reviews research results for the head, medium and recording properties of a perpendicular recording system. Superior bit density characteristics obtained so far indicate that perpendicular recording is basically free from demagnetization in the high density region and that it will establish a new field of recording technology in the future. The prediction is explained in the context of complementary profiles of longitudinal and perpendicular recording. At the very beginning of magnetic recording, a perpendicular-type head was considered but abandoned because a suitable medium did not exist. Progress in material science has enabled us to develop a perpendicular recording medium which is very well suited for ultra high density recording. As so often happens, history has repeated itself through another study of perpendicular recording.  相似文献   

4.
Since perpendicular magnetic recording is free from recording demagnetization, high-density recording up to the intrinsic limit of a recording medium is possible. This prediction was verified experimentally in a flexible disk system using a single-pole head and a Co-Cr/Ni-Fe double-layer medium. We could record and reproduce signals up to 680KFRPI. The recording bit length at the highest density was of the order of the Co-Cr columnar diameter.  相似文献   

5.
The demagnetization effect in magnetic recording must be evaluated, not as static self-demagnetization, but as a dynamic demagnetizing field at an instant when the head field is applied to the medium. From this fact it becomes necessary to obtain a self-consistent magnetization distribution in the medium. A method of calculation and its results are described. The relation between the longitudinal and the vector magnetization is clarified. The experimental results of the recording demagnetization in sinusoidal recording and the pulse width and the peak shift in digital recording are interpreted as the new phenomena that is related to the dynamical behavior of the demagnetizing field in the recording process.  相似文献   

6.
A theory is derived to explain the recording properties of thin metal tapes in terms of their magnetic properties and in terms of the losses within the replay head. The tape losses are considered as being due to self-demagnetization and head losses resulting from gap and separation effects. The reproduction of isolated pulses is first considered and then modified to the condition of pulse crowding. A comparison of theory with experiment shows that the theory is sufficient in its prediction of head losses but has some limitations in its prediction of tape losses at high packing densities.  相似文献   

7.
The published theoretical treatments on the magnetic recording process are reviewed with particular emphasis on the validity of the models and the assumptions on which they are based. It is concluded that the existing theories fairly well describe the geometrical aspects of recording-transducer to medium spacing and gap lengths-but are deficient in describing analytically the magnetic state of the recording medium before and after demagnetization. Calculated magnetization distributions by harmonic analysis for different recording media are in support of the fact that the usually assumed linear and arctangent magnetization transitions are only rough approximations of the magnetic state of a recording medium between regions of opposite magnetization. Additional shortcomings of our theoretical understanding are indicated by the assumptions of uniform magnetization through the recording medium thickness, neglecting the perpendicular component of the magnetization, and not taking into account finite track widths and magnetostatic interactions between adjacent transitions.  相似文献   

8.
The potential of perpendicular magnetic recording using a single-pole head and a double-layered medium has been investigated theoretically by computer analysis and compared with that of longitudinal magnetic recording. In conventional longitudinal recording, a recording demagnetizing loss due to the change of magnetization mode from semicircular to circular shapes occurs with increasing recording level at high bit density. In perpendicular magnetic recording, the perpendicular magnetization mode is maintained regardless of recording level even at an extremely high bit density of 571 kFRPI. This indicates that the perpendicular recording medium has a very high recording resolution, where a single bit size approaches several diameters of the microcrystalline particles of the Co-Cr layer. An ultrahigh density at which the recording area for 1 bit will reach 1 μ2 at present and 500 Å2 in future should be possible  相似文献   

9.
Recent advance of magnetic recording technology has resulted in tremendous increase in area densities. Several new components were developed: Thin film media, and thin film head in longitudinal recording; Single-layer media, double-layer media, and probe head in perpendicular recording. A variety of head and media combinations become possible, and each has a different degree of head-media coupling. The soft magnetic underlayer in double-layer perpendicular media has such a strong coupling with the head that the head and media must be treated as a single entity in the analysis. The evaluation of only a head or a medium without knowing its counterpart could be quite misleading. Optimization of head-media coupling to select the most suitable combination becomes a key factor in designing a high density recording system. We will review the recording and reproducing processes from both the theoretical and experimental aspects for all the head-media structures which have some practical interest.  相似文献   

10.
Perpendicular magnetic recording   总被引:4,自引:0,他引:4  
This paper describes the recent studies for the magnetic head, the medium and the recording properties on a new perpendicular magnetic recording system. The complemental features between the perpendicular and the longitudinal recording are discussed to establish an efficient magnetic recording system. Superior response in the amplitude and the peak shift characteristics for a digital signal proves that the perpendicular magnetization mode is basically free from the recording demagnetization in high densities and the maximum density has been limited merely by the resolution of the reproducing head. Significant improvement for the recording and the reproducing sensitivities of a perpendicular head has been made by using a composite anisotropy medium composed by double layers of Fe-Ni and Co-Cr thin films.  相似文献   

11.
The high density recording characteristics of perpendicular magnetic recording using a single-pole head are affected by the magnetic interaction between the medium and the head. By decreasing the relative thickness of the Co-Cr layer in the double-layer medium to that of the main-pole of the head, and increasing the saturation magnetization of the Co-Cr layer, the high density recording characteristics are enhanced. When requisite conditions are realized, the reproduced voltage vs. bit density characteristics are improved considerably for a thinner main-pole of the single-pole head.  相似文献   

12.
In this tutorial paper, perpendicular and longitudinal magnetic recording are compared in terms of their fundamental magnetization transition sharpness and magnetostatic energy per bit. The superiority of perpendicular recording to longitudinal recording at high densites is demonstrated. Perpendicular recording with ring-shaped heads is also discussed. Performance and structural features are compared for several different head configurations.  相似文献   

13.
The storing of recorded bits in a perpendicular orientation holds great promise for high linear density recording systems. However, the most common embodiment of perpendicular recording (the probe head/double layer media) has several unresolved issues complicating its integration into commercial disk drives. The major issues include media relaxation, head induced media erasure, resolution limitations due to head-to-underlayer spacing constraints, and extreme sensitivity to stray magnetics fields, which are complex and highly interrelated. It is concluded that the realization of perpendicular recording in commercial disk drives will require new transducer and media designs that solve these problems  相似文献   

14.
The trends in perpendicular magnetic recording research are discussed, with emphasis on clarifying the trend of research on recording media, their materials, and head materials. Among numerous proposed perpendicular recording media materials, barium ferrite powder and evaporated Co-Cr films seem to lead in practical applications, since their mass production seems to be very successful. There still exist crucial points in their development. However, improvements are continuously taking place. Other candidate perpendicular recording media for a device which has a ring head are also discussed. It is concluded that, for future high-density magnetic recording, utilizing fully the perpendicular component of media magnetization will furnish the key to success  相似文献   

15.
This paper presents the results of an investigation of a high density magnetic recording technique utilizing a thin film recording head and a transverse mode of recording on thin media. The significant results of this investigation are as follows. 1) Densities as high as 18 500 transitions per inch were experimentally written in a 300-Å thick FeCr medium having an Hcof 70 oersteds. 2) These densities were written with a thin film, vapor-deposited, recording head having a MATED-FILM® structure with a 0.4-mil etched gap. 3) Track widths of 1-mil on 2-mil centers were experimentally achieved. 4) Optical readout of a 0.2-mil wide transition (width of beam) region corresponding to 5000 transitions per inch was achieved using a laser beam and a linear motion transport system under ideal experimental conditions. 5) The magnetic field from the Néel wall separating recording domains was detected using a MATED-FILM Etched Gap head making this a possible readout method. Maximum achieved linear bit densities as a function of recording media coercivities are given.  相似文献   

16.
The perpendicular recording process is essentially demagnetization-free at high bit densities, and the head-to-medium spacing losses become perhaps the most constraining factor in realizing the ultimate capabilities of this technology. In this study we investigated the recording losses resulting from head-to-medium spacing for a double layer madium using a single-pole head and a narrow gap ring head. The spacing was introduced by sputtering Ti overlayers onto the CoCr film in the range of 0.02 microns to 0.18 microns. The recording experiments were performed using a tape deck and a closed tape loop running at low speed. For a spacing d and a wavelength λ, the spacing loss when writing and reading with the single pole head was found to be -99d/λ (dB) for any bit density up to 4Kbpmm (kilo-bits per mm). The spacing losses for the ring head, however, depend on bit density, and are much larger at lower bit densities. In an attempt to separate the writing from the reading spacing losses, we recorded with the single pole head and read back with the ring head. The results of this experiment show that the large spacing losses observed with a ring head at the lower bit densities are primarily incurred during the writing process.  相似文献   

17.
A digital recording system is modeled by means of a complex Fourier series representation employing transforms of arctangent functions to describe the effects of write field gradient demagnetization and self-demagnetization. Pulse asymmetry and rise time effects are incorporated by means of phase shifts from complex transfer functions used in describing the dependence of head properties on a complex permeability. Experimental measurements on a specific system (Co substituted γ-Fe2O3tape and metal heads) show good correlation with the theory, especially with respect to spectral content, waveform shape, and peak shifts. The model is one-dimensional and limited to recording media initially ac demagnetized and to a write current range in which it is possible to define an effective penetration depth for saturation recording.  相似文献   

18.
Barium ferrite particulate media have generated a lot of interest for advanced magnetic recording applications because they offer the potential to combine high recording densities with relatively low manufacturing cost. They consist of small (sub-tenth micron) plateletshaped particles with competing orthogonal anisotropies (crystalline and shape) of comparable magnitude. These anisotropies, along with the quasi-perpendicular characteristics of the barium ferrite coatings impart to them many subtle and surprising properties, requiring a careful and judicious choice of parameters for each application. The choices include the aspect ratio of the particles, their coercivity, the particle-to-binder loading, and the degree and direction of magnetic orientation. The problem areas include dispersion and orientation of the particles, overwrite characteristics of the coatings, thermal coefficients of the magnetic parameters and maintaining media coercivities at moderate levels. I this paper, we discuss the effect of the particle and coating parameters on the ensuing magnetic and recording properties of the media, and the types of choices that should be made to minimize the impact of some of the potential problems mentioned above.  相似文献   

19.
Thermal effect limits in ultrahigh-density magnetic recording   总被引:4,自引:0,他引:4  
In current longitudinal magnetic recording media, high areal density and low noise are achieved by statistical averaging over several hundred weakly coupled ferromagnetic grains per bit cell. Continued scaling to smaller bit and grain sizes, however, may prompt spontaneous magnetization reversal processes when the stored energy per particle starts competing with thermal energy, thereby limiting the achievable areal density. Charap et al. have predicted this to occur at about 40 Gbits/in2. This paper discusses thermal effects in the framework of basic Arrhenius-Neel statistical switching models. It is emphasized that magnetization decay is intimately related to high-speed-switching phenomena. Thickness-, temperature- and bit-density dependent recording experiments reveal the onset of thermal decay at “stability ratios” (KuV/KBT)0 ≃35 ± 2. The stability requirement is grain size dispersion dependent and shifts to about 60 for projected 40 Gbits/in 2 conditions and ten-year storage times. Higher anisotropy and coercivity media with reduced grain sizes are logical extensions of the current technology until write field limitations are reached. Future advancements will rely on deviations from traditional scaling. Squarer bits may reduce destabilizing stray fields inside the bit transitions. Perpendicular recording may shift the onset of thermal effects to higher bit densities. Enhanced signal processing may allow signal retrieval with fewer grains per bit. Finally, single grain per bit recording may be envisioned in patterned media, with lithographically defined bits  相似文献   

20.
High anisotropy L1(0) ordered FePt thin films are considered to have high potential for use as high areal density recording media, beyond 1 Tera bit/in2. In this paper, we review recent results on the synthesis and magnetic properties of L1(0) FePt nanocomposite films. Several fabrication methods have been developed to produce high-anisotropy FePt films: epitaxial and non-epitaxial growth of (001)-oriented FePt:X (X = Au, Ag, Cu, C, etc.) composite films that might be used for perpendicular media; monodispersed FePt nanocluster-assembled films grown with a gas-aggregation technique and having uniform cluster size and narrow size distribution; self-assembled FePt particles prepared with chemical synthesis by reduction/decomposition techniques, etc. The magnetic properties are controllable through variations in the nanocluster properties and nanostructure. FePt and related films show promise for development as heat-assisted magnetic recording media at extremely high areal densities. The self-assembled FePt arrays show potential for approaching the ultimate goal of single-grain-per-bit patterned media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号