首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
气体透过碳膜的非平衡动力学模拟研究   总被引:1,自引:0,他引:1  
The permeation of various pure gas (H2, He, Ne, CH4 and At) through carbon membranes is investigated using a dual control volume grand canonical molecular dynamics method. A two-dimensional slit pore is employed instead of the one-dimensional pore. Compared with the experiments, simulation results show that the improvement of pore model is very necessary. The effects of membrane thickness, pore width and temperature on gas permeance and ideal separation factor are also discussed. Results show that gas permeates through membrane according to Knudsen diffusion in large pore, while Knudsen diffusion is accompanied by molecular sieving in small pore. Moreover, methane is easily adsorbed on the membrane surface due to strong attractive interactions of membrane and shows higher permeance than that of Knudsen flow. In addition, it is noted that when membrane thickness is thin enough the permeance of gas does not decrease with the increase of membrane thickness due to the strong adsorption until membrane resistance becomes dominant.  相似文献   

2.
In our previous work, we calculated transport properties of pure gaseous polyatomic carbon tetrafluoride (CF4) and five equimolar binary gas mixtures of CF4 with noble gases through inversion technique. The present work is a continuation of our studies on determining the transport properties of binary gas mixtures CF4 with some gases including three diatomic molecules CO, N2, and O2, a linear polyatomic CO2, and two non-linear polyatomic molecules SF6 and CH4. The Chapman-Enskog and Vesovic-Wakeham methods as well as inversion procedure are used to determine the viscosities, diffusivities, and thermal conductivities, which deviates from the literature values within 1%, 4%, and 5%, respectively.  相似文献   

3.
Palladium membranes were prepared on an a-alumina support by metal-organic compound chemical vapor deposition (MOCVD) method from palladium(Ⅲ) acetate precursor. Permeation properties of hydrogen and helium gas were studied as a function of the number of times of deposition of palladium on the peeling off phenomenon of palladium, which is common in electroless plated membrane, was observed. Silica was introduced into the pores to prevent the palladium grain from peeling off. The palladium-silica conjugated membrane does not show the peeling off phenomenon and can withstand the high temperature up to 800℃ which is the upper limit of our apparatus.The separation factor for hydrogen gas over carbon dioxide gas was improved with the increase of number of times of silica coating by sacrificing the H2 permeation and finally increased to four times. The improvement on the separation of hydrogen gas over carbon dioxide for pulladium-silica conjugated membrane was evaluated and a model of permeation pattern (palladium and silica) was proposed. This model suggests that the separation factor for hydrogen over carbon dioxide could be improved by introducing silica layer because the silica layer fills the pores and reduces the gas permeation without sacrificing the hydrogen permeation through the palladium region. These results indicate that the introduction of silica into the palladium grain is a promising means to improve the hydrogen separation performance of palladium based composite membranes.  相似文献   

4.
Membrane filtration technology combined with coagulation is widely used to purify river water. In this study, micro filtration (MF) and ultrafiltration (UF) ceramic membranes were combined with coagulation to treat local river water located at Xinghua, Jiangsu province, China. The operation parameters, fouling mechanism and pilot-scale tests were investigated. The results show that the pore size of membrane has small effect on the pseudo-steady flux for dead-end filtration, and the increase of flux in MF process is more than that in UF process for cross-flow filtration with the same increase of cross-flow velocity. The membrane pore size has little influence on the water quality. The analysis on membrane fouling mechanism shows that the cake filtrationhas significant in fluence on the pseudo-steady flux and water quality for the membrane with pore size of 50, 200 and 500 nm. For the membrane with pore size of 200 nm and backwashing employed in our pilot study, a constant flux of 150 L-m^-2-h^-1 was reached during stable operation, with the removal efficiency of turbidity, total organic carbon (TOC) and UV254 higher than 99%, 45% and 48%, respectively. The study demonstrates that coagulation-porous ceramic membrane hybrid process is a reliable method for river water purification.  相似文献   

5.
吸附分离CH4/N2可行性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
The separation between methane and nitrogen is an inevitable and important task in the C1 chemical technology and the utilization of methane from coalbed, yet it is considered to be one of the tough tasks in the field of separation. Pressure swing adsorption is a preferable technology if an adsorbent that allowing a large coefficient of separation for the CH4/N2 system is available. The separation coefficients between CH4 and N2 were obtained on analyzing the breakthrough curves measured experimentally with nine adsorbents. A technique of measuring the temperature-pulse was incorporated in the experiments, and the reliability of the result was improved.Superactivated carbon with large surface area and plenty of micropores was shown to have the largest separation coefficient and to be promising for the commercial utilization.  相似文献   

6.
Ceramic capillary membrane has received much attention due to its relatively high pack density and favorable mechanical strength.However,it is difficult to prepare capillary membrane on its thin support by a dip-coating method.In this study,alumina microfiltration membranes were prepared on the inner surface of alumina capillary support(outer diameter 4 mm,inner diameter 2.5 mm)by a dip-coating method.Scanning electron microscopy(SEM)observation,gas bubble pressure(GBP)method and membrane permeation test were carried out to evaluate membrane performance.Two major effects in preparation of crack-free membrane,capillary filtration and film-coating,upon the thin support were studied.The as-prepared crack-free membrane presents a narrow pore size distribution,a mean pore size of about 0.6μm and a high pure water flux of 86000 L·m -2 ·h -1 ·MPa.It is proved that the membrane thickness should be sufficiently large to overcome the defects of support surface,but it is only one of the prerequisites for the formation of crack-free membrane.Furthermore,it is demonstrated that the capillary filtration effect is greatly restricted for thin capillary support with the dip-coating method and the film-coating effect plays a crucial role in the formation of crack-free membrane.  相似文献   

7.
Fixed carrier membrane exhibits attractive CO2 permeance and selectivity due to its transport mecha-nism of reaction selectivity (facilitated transport). However, its performance needs improvement to meet cost targets for CO2 capture. This study attempts to develop membranes with multiple permselective mechanisms in order to enhance CO2 separation performance of fixed carrier membrane. In this study, a novel membrane with multiple permselective mechanisms of solubility selectivity and reaction selectivity was developed by incorporating CO2-selective adsorptive silica nanoparticles in situ into the tertiary amine containing polyamide membrane formed by interfacial polymerization (IP). Various techniques were employed to characterize the polyamide and polyam-ide-silica composite membranes. The TGA result shows that nanocomposite membranes exhibit superior thermal stability than pure polyamide membranes. In addition, gas permeation experiments show that both nanocomposite membranes have larger CO2 permeance than pure polyamide membranes. The enhanced CO2/N2 separation per-formance for nanocomposite membranes is mainly due to the thin film thickness, and multiple permselective mechanisms of solubility selectivity and reaction selectivity.  相似文献   

8.
Dense membrane with the composition of SrFe0.6Cu0.3Ti0.1O3-δ (SFCTO) was prepared by solid state reaction method. Oxygen permeation flux through this membrane was investigated at operating temperature ranging from 750℃ to 950℃ and different oxygen partial pressure. XRD measurements indicated that the compound was able to form single-phased perovskite structure in which part of Fe was replaced by Cu and Ti. The oxygen desorption and the reducibility of SFCTO powder were characterized by thermogravimetric analysis and temperature programmed reduction analysis, respectively. It was found that SFCTO had good structure stability under low oxygen pressure at high temperature. The addition of Ti increased the reduction temperature of Cu and Fe. Performance tests showed that the oxygen permeation flux through a 1.5 mm thick SFCTO membrane was 0.35-0.96 ml·min ^-1·cm^-2 under air/helium oxygen partial pressure gradient with activation energy of 53.2 kJ·mol^-1. The methane conversion of 85%, CO selectivity of 90% and comparatively higher oxygen permeation flux of 5 ml·min^-1·cm^- 2 were achieved at 850℃, when a SFCTO membrane reactor loaded with Ni-Ce/Al2O3 catalyst was applied for the partial oxidation of methane to syngas.  相似文献   

9.
李磊  肖泽仪  蒲亮  张志炳 《化工学报》2002,53(12):1315-1319
The pervaporation of organics from dilute aqueous solution through a novel plate composite silicone rubber membrane was investigated. The measured and derived data indicated that the composite membrane possessed very high permeation flux and stable selectivity for dilute organic aqueous solution. Based upon the well- known resistance-in- series model, diffusive mass transfer behavior in membrane was investigated by calculation from the measured data with different skin layer thickness of membranes. The experimental results showed that the diffusive mass transfer coefficient conformed to Arrhenius correlation with temperature and was independent of the flow status. The diffusivities of the given alcohols in membrane had an order of magnitude 10 m-10·s-1 at a wider range of temperature, which is similar to those reported in literatures.  相似文献   

10.
MDEA吸收CO2稳态模型的数值求解方法   总被引:1,自引:0,他引:1  
The shooting method and the difference method are used for numerical simulation of CO2 absorption with aclueous solution of methyldiethanolamine (MDEA). It is demonstrated that these methods axe available for the steady-state model, which may be expressed as a set of differential algebraic equations (DAEs) with two-point boundary values. This method makes it possible not only to obtain the concentration profiles for MDEA system, but also to reveal the effect of CO2 interfacial concentration on the enhancement factor. With this numerical simulation,the mass transfer process with multicomponent diffusion and reactions can be better understood.  相似文献   

11.
Diffusion of pure H2,CO,N2,O2and CH4 gases through nanoporous carbon membrane is investigated by carrying out non-equilibrium molecular dynamics(NEMD)simulations.The flux,transport diflusivity and acti-vation energy for the pure gases diffusing through carbon membranes with various pore widths were investigated.The simulation results reveal that transport diffusivity increases with temperature and pore width.and its values port diflusivities are comparablc With that of Rao and Sircar(J.Membr.Sci.,1996).indicating the NEMD simula-tion method iS a good toO]for predicting the transport diflusivities for gases in porous materialS.which iS always difficult to be accurately measured by experiments.  相似文献   

12.
The thermal diffusivities of polycrystalline Be4B, Be2B, and BeB6 were measured by the flash method. Generally, the thermal diffusivities at a given temperature decrease with increasing boron content. The thermal diffusivities of Be4B, Be2B, and BeB6 varied from 0.13 to 0.072 to 0.031 cm2/s, respectively, at 200°C and from 0.068 to 0.038 to 0.007 cm2/s at 1000°C. Heat transport in BeB6 is expected to occur almost entirely by phonon conduction, whereas electronic conduction probably plays a major role in Be4B and Be2B. Analytical expressions for the thermal diffusivities (α) of Be4B and Be2B at 200° to 1000°C and of BeB6 at 25° to 1500°C are: α(Be4B)=1/(5.83+9.05×10 3 T ), α(Be2B)=1/(10.92+1.40×10 2 T ), and α(BeB6)=5.60×10 4+5.72/ T +77.3/T2-4.09×104/T3 cm2/s.  相似文献   

13.
张云  傅吉全 《工业催化》2017,25(1):48-53
以可溶性淀粉为碳源、三嵌段共聚物F127为模板剂和K_2CO_3为活化剂,采用一步合成法制备系列淀粉基碳分子筛。通过扫描电子显微镜和N_2吸附-脱附分析淀粉基碳分子筛孔隙形貌和孔结构,采用热重-TG和傅里叶红外光谱表征原料和样品的物质结构官能团。结果表明,K_2CO_3浓度、F127添加比例、反应时间和反应温度影响淀粉基碳分子筛的孔隙结构。在炭化温度800℃、K_2CO_3浓度为0.50 mol·L~(-1)、F127与淀粉质量比=1∶3、反应温度50℃和反应时间12 h条件下制备的淀粉基碳分子筛,孔径集中于0.63 nm,比表面积为1 069.290 4 m~2·g~(-1),单点孔容0.667 901 cm~3·g~(-1)。  相似文献   

14.
In this work, nitrogen-doped porous carbons (NACs) were fabricated as an adsorbent by urea modification and KOH activation. The CO2 adsorption mechanism for the NACs was then explored. The NACs are found to present a large specific surface area (1920.72– 3078.99 m2·g1) and high micropore percentage (61.60%–76.23%). Under a pressure of 1 bar, sample NAC-650-650 shows the highest CO2 adsorption capacity up to 5.96 and 3.92 mmol·g1 at 0 and 25 °C, respectively. In addition, the CO2/N2 selectivity of NAC-650-650 is 79.93, much higher than the value of 49.77 obtained for the nonnitrogen-doped carbon AC-650-650. The CO2 adsorption capacity of the NAC-650-650 sample maintains over 97% after ten cycles. Analysis of the results show that the CO2 capacity of the NACs has a linear correlation (R2 = 0.9633) with the cumulative pore volume for a pore size less than 1.02 nm. The presence of nitrogen and oxygen enhances the CO2/N2 selectivity, and pyrrole-N and hydroxy groups contribute more to the CO2 adsorption. In situ Fourier transform infrared spectra analysis indicates that CO2 is adsorbed onto the NACs as a gas. Furthermore, the physical adsorption mechanism is confirmed by adsorption kinetic models and the isosteric heat, and it is found to be controlled by CO2 diffusion. The CO2 adsorption kinetics for NACs at room temperature and in pure CO2 is in accordance with the pseudo-first-order model and Avramís fractional-order kinetic model.  相似文献   

15.
Selective adsorption and transport of gases in coal are important for natural gas recovery and carbon sequestration in depleted coal seams for environmental remediation. Gases are stored in coal mainly in the adsorbed state. In this study, the interaction energies of adsorbates (CO2, CH4, and N2) and micropores with various widths are investigated using a slit-shape pore model. The experimental adsorption rate data of the three gases conducted on the same coal sample are numerically simulated using a bidisperse model and apparent diffusivities of each adsorbate in the macropore and micropore are determined. The results indicate that the relative adsorbate molecule size and pore structure play an important role in selective gas adsorption and diffusion in micropores. Generally, the microporous coals diffusion is activated and the apparent micropore diffusivities of gases in coal decrease strongly with increase in gas kinetic diameters. Apparent micropore diffusivity of CO2 is generally one or two order of magnitude higher than those of CH4 and N2 because their kinetic diameters have the relation: CO2 (0.33 nm)<N2 (0.36 nm)<CH4 (0.38 nm). In contrast to theoretical values, apparent macropore diffusivity of CO2 is also larger than those of CH4 and N2, suggesting that coal has an interconnected pore network but highly constricted by ultra micropores with width <∼0.6 nm. It is also found that the apparent diffusivity strongly decreases with an increase in gas pressure, which may be attributed to coal matrix swelling caused by gas adsorption. Therefore, rigorous modeling of gas recovery and production requires consideration of specific interaction of gas and coal matrix.  相似文献   

16.
A series of novel dense mixed conducting ceramic membranes based on K2NiF4-type (La1–xCax)2 (Ni0.75Cu0.25)O4+δ was successfully prepared through a sol-gel route. Their chemical compatibility, oxygen permeability, CO and CO2 tolerance, and long-term CO2 resistance regarding phase composition and crystal structure at different atmospheres were studied. The results show that higher Ca contents in the material lead to the formation of CaCO3. A constant oxygen permeation flux of about 0.63 mL·min1·cm2 at 1173 K through a 0.65 mm thick membrane was measured for (La0.9Ca0.1)2 (Ni0.75Cu0.25)O4+δ, using either helium or pure CO2 as sweep gas. Steady oxygen fluxes with no sign of deterioration of this membrane were observed with increasing CO2 concentration. The membrane showed excellent chemical stability towards CO2 for more than 1360 h and phase stability in presence of CO for 4 h at high temperature. In addition, this membrane did not deteriorate in a high-energy CO2 plasma. The present work demonstrates that this (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ membrane is a promising chemically robust candidate for oxygen separation applications.  相似文献   

17.
This paper presents a multi-scale model to simulate the multicomponent gas diffusion and flow in bulk coals for CO2 sequestration enhanced coalbed methane recovery. The model is developed based on a bi-dispersed structure model by assuming that coal consists of microporous micro-particles, meso/macro-pores and open microfractures. The bi-disperse diffusion theory and the Maxwell-Stefan approach were incorporated in the model, providing an improved simulation of the CH4—CO2/CH4—N2 counter diffusion dynamics. In the model, the counter diffusion process is numerically coupled with the flow of the mixture gases occurring within macro-pores or fractures in coal so as to account for the interaction between diffusion and flow in gas transport through coals. The model was validated by both experimental data from literature and our CO2 flush tests, and shows an excellent agreement with the experiments. The results reveal that the gas diffusivities, in particular the micro-pore diffusivities are strongly concentration-dependent.  相似文献   

18.
A single particle sorption model based on dual diffusion processes (pore diffusion and diffusion of adsorbed species) with equilibrium (Freundlich isotherm) between the macropore fluid phase and the sorbed phase was developed. The model was fitted to experimentally determined adsorption and desorption of SO2 on large (0.2 cm radius) activated carbon particles over a range of temperatures and SO2 concentrations. The model fitted the experimental data well and typical extracted values of the macropore and surface diffusivities were DP = 0.038 cm2/s and Ds = 1.0 × 10-5cm2/s at 25°C. The value of macropore diffusivity gave a macropore tortuosity factor of 8.0, whilst the temperature dependence of the surface diffusivity gave an activation energy of 5.0 kJ/mole.  相似文献   

19.
Methods for preparation of carbon/silicalite-1 composite membranes have been developed. First, silicalite-1 membranes were prepared by in-situ hydrothermal synthesis on both porous alumina and metal disks. Preparation of the carbon/silicalite-1 composite membranes was accomplished by polymerizing furfuryl alcohol on the surface of the silicalite-1 membrane, followed by carbonizing the polymer layer in an inert atmosphere at 773 K. The pure silicalite-1 membrane showed no selectivity for single gases, indicating the presence of intercrystalline diffusion and viscous flow as the dominant transport mechanism. The carbon/zeolite composite membrane exhibited ideal selectivities for He/N2, CO2/N2, and N2/CH4 of 11.99, 17.12, and 3.58 at room temperature. No permeation of n-butane and i-butane for the composite membrane was detected up to temperatures of 453 K, indicating that the pore size for the composite membrane was approximately 0.4 nm. By carefully oxidizing the carbon layer in air at 623 K, the pore size of the composite membrane was adjusted such that n-butane permeation could be detected. No permeation of i-butane was apparent, suggesting that the pore size of the composite membrane had been enlarged to approximately 0.5 nm. Further oxidation of the carbon layer produced a finite n-/i-C4H4 ideal selectivity, indicating that the pore size of the membrane was now larger than 0.55 nm. Therefore, selective oxidation of the carbon layer can be used to control the pore size of the composite membrane.  相似文献   

20.
Two-dimensional (2D) titanium carbide MXene Ti3C2 has attracted significant research interest in energy storage applications. In this study, we prepared Chl@Ti3C2 composites by simply mixing a chlorophyll derivative (e.g., zinc methyl 3-devinyl-3-hydroxymethyl- pyropheophorbide a (Chl)) and Ti3C2 in tetrahydrofuran, where the Chl molecules were aggregated among the multi-layered Ti3C2 MXene or on its surface, increasing the interlayer space of Ti3C2. The as-prepared Chl@Ti3C2 was employed as the anode material in the lithium-ion battery (LIB) with lithium metal as the cathode. The resulting LIB exhibited a higher reversible capacity and longer cycle performance than those of LIB based on pure Ti3C2, and its specific discharge capacity continuously increased along with the increasing number of cycles, which can be attributed to the gradual activation of Chl@Ti3C2 accompanied by the electrochemical reactions. The discharge capacity of 1 wt-% Chl@Ti3C2 was recorded to be 325 mA·h·g–1 at the current density of 50 mA·g–1 with a Coulombic efficiency of 56% and a reversible discharge capacity of 173 mA·h·g–1 at the current density of 500 mA·g–1 after 800 cycles. This work provides a novel strategy for improving the energy storage performance of 2D MXene materials by expanding the layer distance with organic dye aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号