首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we introduce a new scheme to improve the performance of the terrestrial - digital multimedia broadcasting (T-DMB) system, which exploits the burst error characteristics at the output of the convolutional decoder and the properties of the Reed-Solomon (RS) decoder to correct more errors by predicting erasures in each RS packet in advance as many as possible before decoding in the RS decoder. Simulation results show that the proposed scheme yields performance gain of around 1 dB at BER of 10-R which can result in the extended coverage area of the T-DMB system.  相似文献   

2.
Next generation mobile communication system, such as IMT‐2000, adopts Turbo codes due to their powerful error correction capability. This paper presents a block‐wise maximum a posteriori (MAP) Turbo decoding structure with a low memory requirement. During this research, it has been observed that the training size and block size determine the amount of required memory and bit‐error rate (BER) performance of the block‐wise MAP decoder, and that comparable BER performance can be obtained with much shorter blocks when the training size is sufficient. Based on this observation, a new decoding structure is proposed and presented in this paper. The proposed block‐wise decoder employs a decoding scheme for reducing the memory requirement by setting the training size to be N times the block size. The memory requirement for storing the branch and state metrics can be reduced 30% to 45%, and synthesis results show that the overall memory area can be reduced by 5.27% to 7.29%, when compared to previous MAP decoders. The decoder throughput can be maintained in the proposed scheme without degrading the BER performance.  相似文献   

3.
SISO decoding for block codes can be carried out based on a trellis representation of the code. However, the complexity entailed by such decoding is most often prohibitive and thus prevents practical implementation. This paper examines a new decoding scheme based on the soft-output Viterbi algorithm (SOVA) applied to a sectionalized trellis for linear block codes. The computational complexities of the new SOVA decoder and of the conventional SOVA decoder, based on a bit-level trellis, are theoretically analyzed and derived for different linear block codes. These results are used to obtain optimum sectionalizations of a trellis for SOVA. For comparisons, the optimum sectionalizations for Maximum A Posteriori (MAP) and Maximum Logarithm MAP (Max-Log-MAP) algorithms, and their corresponding computational complexities are included. The results confirm that the new SOVA decoder is the most computationally efficient SISO decoder, in comparisons to MAP and Max-Log-MAP algorithms. The simulation results of the bit error rate (BER) performance, assuming binary phase -- shift keying (BPSK) and additive white Gaussian noise (AWGN) channel, demonstrate that the performance of the new decoding scheme is not degraded. The BER performance of iterative SOVA decoding of serially concatenated block codes shows no difference in the quality of the soft outputs of the new decoding scheme and of the conventional SOVA.  相似文献   

4.
为提高插入删节信道下反转级联水印码(Reverse Concatenated Watermark Code)的译码性能,本文设计了一种反转级联水印码的硬判决迭代译码方案。该方案在反转级联水印码内译码器中引入外译码器输出的硬判决估计序列,交织后的硬判决序列和水印序列的异或作为内译码器的更新后的参考序列,从而减小了码字序列对水印码的影响,改善了水印译码器的参考信息。前后向估计方法利用该参考序列和更新后的有效替代错误概率计算输出概率,进一步用于计算前向度量值和后向度量值,提高了内译码器输出的每个比特的似然信息的可靠度,改善了整体性能。仿真结果表明,当反转级联水印码方案采用硬判决迭代译码算法时,整体性能得到有效提高。   相似文献   

5.
A practical definition of an erasure is presented and leads to new expressions for correct and incorrect decoding probabilities for Reed-Solomon codes, assuming an incomplete decoder. The main benefit of this approach is that, in contrast with the usual approach, one is able to analytically demonstrate the performance improvement provided by errors-and-erasures decoding relative to errors-only decoding. A technique is presented for evaluating the performance of Reed-Solomon codes for both types of decoding on an interleaved burst error channel such as is seen in digital magnetic tape recording. Several illustrative examples are included  相似文献   

6.
In this paper, we propose and present implementation results of a high‐speed turbo decoding algorithm. The latency caused by (de)interleaving and iterative decoding in a conventional maximum a posteriori turbo decoder can be dramatically reduced with the proposed design. The source of the latency reduction is from the combination of the radix‐4, center to top, parallel decoding, and early‐stop algorithms. This reduced latency enables the use of the turbo decoder as a forward error correction scheme in real‐time wireless communication services. The proposed scheme results in a slight degradation in bit error rate performance for large block sizes because the effective interleaver size in a radix‐4 implementation is reduced to half, relative to the conventional method. To prove the latency reduction, we implemented the proposed scheme on a field‐programmable gate array and compared its decoding speed with that of a conventional decoder. The results show an improvement of at least five fold for a single iteration of turbo decoding.  相似文献   

7.
A Low Complexity Decoding Algorithm for Extended Turbo Product Codes   总被引:1,自引:0,他引:1  
In this letter, we propose a low complexity algorithm for extended turbo product codes by considering both the encoding and decoding aspects. For the encoding part, a new encoding scheme is presented for which the operations of looking up and fetching error patterns are no longer necessary, and thus the lookup table can be omitted. For the decoder, a new algorithm is proposed to extract the extrinsic information and reduce the redundancy. This new algorithm can reduce decoding complexity greatly and enhance the performance of the decoder. Simulation results are presented to show the effectiveness of the proposed scheme.  相似文献   

8.
Almost all the probabilistic decoding algorithms known for convolutional codes, perform decoding without prior knowledge of the error locations. Here, we introduce a novel maximum-likelihood decoding algorithm for a new class of convolutional codes named as the state transparent convolutional (STC) codes, which due to their properties error detection and error locating is possible prior to error correction. Hence, their decoding algorithm, termed here as the STC decoder, allows an error correcting algorithm to be applied only to the erroneous portions of the received sequence referred to here as the error spans (ESPs). We further prove that the proposed decoder, which locates the ESPs and applies the Viterbi algorithm (VA) only to these portions, always yields a decoded path in trellis identical to the one generated by the Viterbi decoder (VD). Due to the fact that the STC decoder applies the VA only to the ESPs, hence percentage of the single-stage (per codeword) trellis decoding performed by the STC decoder is considerably less than the VD, which is applied to the entire received sequence and this reduction is overwhelming for the fading channels, where the erroneous codewords are mostly clustered. Furthermore, through applying the VA only to the ESPs, the resulting algorithm can be viewed as a new formulation of the VD for the STC codes that analogous to the block decoding algorithms provides a predecoding error detection and error locating capabilities, while performing less single-stage trellis decoding.  相似文献   

9.
This paper presents several results involving Fano's sequential decoding algorithm for convolutional codes. An upper bound to theath moment of decoder computation is obtained for arbitrary decoder biasBanda leq 1. An upper bound on error probability with sequential decoding is derived for both systematic and nonsystematic convolutional codes. This error bound involves the exact value of the decoder biasB. It is shown that there is a trade-off between sequential decoder computation and error probability as the biasBis varied. It is also shown that for many values ofB, sequential decoding of systematic convolutional codes gives an exponentially larger error probability than sequential decoding of nonsystematic convolutional codes when both codes are designed with exponentially equal optimum decoder error probabilities.  相似文献   

10.
In this paper, a concatenated coding scheme for error control in data communications is presented and analyzed. In this scheme, the inner code is used for both error correction and detection; however, the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error (or decoding error) of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughput efficiency of the proposed error control scheme incorporated with a selective-repeat ARQ retransmission strategy is also analyzed. Three specific examples are presented. One of the examples is proposed for error control in the NASA Telecommand System.  相似文献   

11.
For transmitting compressed digital video, the authors propose using threshold decodable block codes with large block length, and a posteriori probability (APP) soft decision decoding. A new approximation of the weight function associated with APP soft decision decoding of threshold decodable codes is presented. When the number of components in the parity equations is large, the new method gives excellent error performance, whereas there is a substantial degradation in the performance of the least reliable symbol approximation presented by Tanaka et al. (1980) and others. The effect of feedback on the performance of the APP decoder is also analyzed. It is shown that if the performance criterion is word error rate rather than bit error rate, feedback of previously decoded bits is essential to obtain all possible coding gain from the soft decision decoder. Finally, the performance of the proposed coding scheme is compared to the performance of a concatenated coding system with the same rate  相似文献   

12.
This paper investigates the performance of the error-forecasting decoding for an interleaved block code on Gilbert-Elliott channels in terms of the word-error probability, which is the sum of the decoder error and failure probabilities. We derive expressions by constructing several Markov chains, starting from a two-state Markov chain of the Gilbert-Elliott channel model. The derived formulas are examined for an interleaved Reed-Solomon code on solid-density and moderate-density burst error channels. Numerical results indicate that the error-forecasting decoding can significantly improve the performance, particularly on solid-density burst error channels. The optimal depth of interleaving for the error-forecasting decoding is also numerically evaluated  相似文献   

13.
针对RS码与LDPC码的串行级联结构,提出了一种基于自适应置信传播(ABP)的联合迭代译码方法.译码时,LDPC码置信传播译码器输出的软信息作为RS码ABP译码器的输入;经过一定迭代译码后,RS码译码器输出的软信息又作为LDPC译码器的输入.软输入软输出的RS译码器与LDPC译码器之间经过多次信息传递,译码性能有很大提高.码长中等的LDPC码采用这种级联方案,可以有效克服短环的影响,消除错误平层.仿真结果显示:AWGN信道下这种基于ABP的RS码与LDPC码的联合迭代译码方案可以获得约0.8 dB的增益.  相似文献   

14.
A novel iterative error control technique based on the threshold decoding algorithm and new convolutional self-doubly orthogonal codes is proposed. It differs from parallel concatenated turbo decoding as it uses a single convolutional encoder, a single decoder and hence no interleaver, neither at encoding nor at decoding. Decoding is performed iteratively using a single threshold decoder at each iteration, thereby providing good tradeoff between complexity, latency and error performance.  相似文献   

15.
The problem of error propagation in uniform codes is investigated using the concept of parity-parallelogram submatrices and the threshold-decoding algorithm. A set of optimum orthogonalization rules is presented and it is shown that if these rules are incorporated into the decoder, then sufficient conditions can be found for the return of the decoder to correct operation following a decoding error. These conditions are considerably less stringent than the requirement that the channel be completely free of errors following a decoding error. However, this is not the case if the prescribed orthogonalization rules are not followed, as is demonstrated with a simple example. It is also shown that the syndrome memory required with Massey's orthogonalization procedure for definite decoding of uniform codes is the lowest possible. The results of simulation of the ratefrac{1}{4}andfrac{1}{8}uniform codes are presented, and these codes are seen to make fewer decoding errors with feedback decoding than with definite decoding. Comparison of the performance of an ordinary feedback decoder with a genie-aided feedback decoder, which never propagates errors, indicates that error propagation with uniform codes is a minor problem if the optimum orthogonalization rules are used, but that the situation is somewhat worse with nonoptimum orthogonalization.  相似文献   

16.
刘重阳  郭锐 《电信科学》2022,38(10):79-88
为了提升基于极化码的稀疏码多址接入(sparse code multiple access,SCMA)系统接收机性能,提出了基于简化软消除列表(simplify soft cancellation list,SSCANL)译码器的循环冗余校验(cyclic redundancy check,CRC)辅助联合迭代检测译码接收机方案。该方案中极化码译码器使用SSCANL译码算法,采用译码节点删除技术对软消除列表(soft cancellation list,SCANL)算法所需要的L次软消除译码(soft cancellation, SCAN)进行简化,通过近似删除冻结位节点,简化节点间软信息更新计算过程,从而降低译码算法的计算复杂度。仿真结果表明,SSCANL算法可获得与SCANL算法一致的性能,其计算复杂度与SCANL算法相比有所降低,码率越低,算法复杂度降低效果越好;且基于SSCANL译码器的CRC 辅助联合迭代检测译码接收机方案相较基于SCAN译码器的联合迭代检测译码(joint iterative detection and decoding based on SCAN decoder, JIDD-SCAN)方案、基于SCAN译码器的CRC辅助联合迭代检测译码(CRC aided joint iterative detection and decoding based on SCAN decoder,C-JIDD-SCAN)方案,在误码率为10-4时,性能分别提升了约0.65 dB、0.59 dB。  相似文献   

17.
A code structure is introduced that represents a Reed-Solomon (RS) code in two-dimensional format. Based on this structure, a novel approach to multiple error burst correction using RS codes is proposed. For a model of phased error bursts, where each burst can affect one of the columns in a two-dimensional transmitted word, it is shown that the bursts can be corrected using a known multisequence shift-register synthesis algorithm. It is further shown that the resulting codes posses nearly optimal burst correction capability, under certain probability of decoding failure. Finally, low-complexity systematic encoding and syndrome computation algorithms for these codes are discussed. The proposed scheme may also find use in decoding of different coding schemes based on RS codes, such as product or concatenated codes.  相似文献   

18.
We propose a joint source-channel decoding approach for multidimensional correlated source signals. A Markov random field (MRF) source model is used which exemplarily considers the residual spatial correlations in an image signal after source encoding. Furthermore, the MRF parameters are selected via an analysis based on extrinsic information transfer charts. Due to the link between MRFs and the Gibbs distribution, the resulting soft-input soft-output (SISO) source decoder can be implemented with very low complexity. We prove that the inclusion of a high-rate block code after the quantization stage allows the MRF-based decoder to yield the maximum average extrinsic information. When channel codes are used for additional error protection the MRF-based SISO source decoder can be used as the outer constituent decoder in an iterative source-channel decoding scheme. Considering an example of a simple image transmission system we show that iterative decoding can be successfully employed for recovering the image data, especially when the channel is heavily corrupted.  相似文献   

19.
In order to realize a higher-code-gain forward error correction scheme in mobile satellite communication systems, a novel concatenated coding scheme employing soft decision decoding for not only inner codes but also outer codes (double soft decision, or DSD, concatenated forward error correction scheme) is proposed. Soft-decision outer decoding can improve the bit error probability of inner decoded data. In this scheme, likelihood information from an inner Viterbi decoder is used in the decoding of outer codes. A technique using the path memory circuit status 1.0 ratio for likelihood information is proposed, and is shown to be the most reliable even though it requires the simplest hardware among the alternative methods. A computer simulation clarifies that the DSD scheme improves Pe performance to one-third of that of the conventional hard-decision outer decoding. Moreover, to reduce the interleaving delay time in fading channels or inner decoded data of concatenated codes, a parallel forward error correction scheme is proposed  相似文献   

20.
One of the simplest, yet most effective schemes thus far devised for the correction of errors on compound channels is the adaptive decoding scheme invented by Gallager. In this paper we present a generalization of this scheme which, at a modest sacrifice in rate, enables the decoder to correct a burst even when the guard space following the burst contains random errors. This is accomplished with the use of two convolutional codes,CandC^ {ast}, whereC^ {ast}containsC. At the encoder, the information sequence is first encoded withCand then, after a fixed delay, is encoded with a "shortened" version ofC^ {ast}, which is added to the parity sequences ofC. At the decoder there are two modes of operation, a random mode and a burst mode. In the random mode errors are corrected withCin a manner similar to that of the Gallager scheme. In the burst mode, the information bits in the bursty blocks are recovered from the later blocks where they have been superimposed on the parity bits. In this mode a decoder forC^ {ast}, which precedes the decoder forC, removes random errors from these later blocks, thereby greatly increasing the probability of recovery from the burst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号