首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transparent Cr4+-Doped YAG Ceramics for Tunable Lasers   总被引:1,自引:0,他引:1  
Transparent Cr4+:YAG (Y3AlSO12) ceramics doped with Ca and Mg as counterions and SiO2 as a sintering aid were fabricated by a solid-state reaction method using high-purity powders of Al2O3, Y2O3, and Cr2O3. The mixed powder compacts were sintered at 1750°C for 10 h in oxygen, or 1750°C for 10 h under vacuum, and then annealed at 1400°C for 10 h in oxygen. Cr-doped YAG ceramics sintered in oxygen had a brown color and characteristic absorption by Cr4+ ions, whereas these YAG ceramics sintered under different conditions (vacuum + oxygen) had a green color and absorption at ∼590 and 430 nm by Cr3+ ions. The absorption behavior of YAG ceramics sintered in oxygen was almost equivalent to that of Cr4+:YAG single crystals fabricated by the Czochralski method.  相似文献   

2.
This paper reports the transport kinetics of Mg in cubic yttria-stabilized zirconia (containing 10% mol of Y2O3 (10YSZ)) involving the bulk and the grain boundary diffusion coefficients. The diffusion-controlled concentration profiles of Mg were determined using secondary ion mass spectrometry (SIMS) in the range 1073–1273 K. The determined bulk diffusion coefficient and the grain boundary diffusion product may be expressed as the following functions of temperature, respectively: D = 5.7 exp[(−390 kJ/mol)/ RT ] cm2·s−1 and D 'αδ= 3.2 × 10−15 exp[(−121 kJ/mol)/ RT ] cm3·s−1, where α is the segregation enrichment factor and δ is the boundary layer thickness. The grain boundary enhancement factor decreases with temperature from 105 at 1073 K to 103 at 1273 K.  相似文献   

3.
The creep behavior of fine-grained (Co0.5Mg0.5)O and (Co0.25Mg0.75)O has been characterized as part of an investigation of kinetic demixing in solid-solution oxides due to a nonhydrostatic stress. (i) For low stresses and small grain sizes, the dominant deformation mechanism for both compositions is diffusional creep limited by the transport of oxygen along grain boundaries. The oxygen grain-boundary diffusivity, D o b is independent of oxygen partial pressure. The values of ω D o b , where ω is the grain-boundary width, that have been determined from the steady-state diffusional creep rates are given by ω D o b =4.7×10−8 exp[-230 (kJ/mol)/ RT ] (cm3/s) for (Co0.5Mg0.5)O in the range 950° to 1200°C and ω D o b =7.4 × 10−8 exp[-263 (kJ/mol)/ RT ] (cm3/s) for (Co0.25Mg0.75)O in the range 1100° to 1250°C. Since oxygen diffusion controls the rate of diffusional creep, kinetic demixing is not observed in deformed samples of either composition. (ii) For high stresses and large grain sizes, the dominant deformation mechanism in both cases is dislocation-climb-controlled creep, where the rate of dislocation climb is controlled by oxygen lattice diffusion. Based on the positive dependence of creep rate on oxygen partial pressure, it is concluded that oxygen diffuses through the lattice by an interstitial mechanism.  相似文献   

4.
The dielectric properties, dopant distributions, and microstructures of BaTiO3-based multilayer ceramic capacitors (MLCCs) sintered in H2–N2–H2O atmospheres with     =10−7.5 Pa (BMX-7.5) and     =10−9.5 Pa (BMX-9.5) were studied, and the effects of oxygen partial pressures were analyzed. Dielectric measurements showed that BMX-7.5 had a lower dielectric constant at temperatures above 20°C, but a higher dielectric constant at temperatures below 10°C when compared with BMX-9.5. The coexistence of core–shell and core grains was observed in bright field (BF) transmission electron microscopy images in both types of capacitors. Triple-point and grain boundary phases were observed more frequently in BMX-9.5 than in BMX-7.5, and energy-dispersive X-ray spectrometer point-by-point analysis revealed that these second phases contained high concentrations of dopants such as Si, Y, and Ca. The dopant concentration in the shell regions in BMX-7.5 was higher than that in similar regions in BMX-9.5. Smeared and twisted grain boundaries with fringes observed in both types of MLCCs indicated that the shell regions in both samples were formed either by diffusion of foreign ions into BaTiO3 or by crystallization of grain boundary and triple-point liquid phases. It was deduced that the partial pressure of oxygen in the sintering atmosphere influenced the microstructures, dopant distributions, and core–shell ratios of the grains in these materials.  相似文献   

5.
The grain boundary structure and oxygen tracer diffusion in transparent yttrium aluminum garnet (YAG) ceramics varying from 2% excess of Y2O3 to 0.5% excess of Al2O3 were studied. The characterization of the specimens is as follows: (i) For the Y2O3-excess specimen, a second phase (yttrium aluminum perovskite: YAP) containing silicon in the grain boundary was found, (ii) For the Al2O3-excess specimen, both aluminum-rich particles (alumina) and a silicon-rich segregant layer were observed in the grain boundary. The volume diffusion of the oxygen tracer is little influenced by the excess composition. In contrast, the grain boundary diffusion of the oxygen tracer is suppressed in the Y2O3-excess specimens, compared to Al2O3-excess specimens. These differences are thought to result from the chemical reaction between the second phase and the intergranular liquid phase during the sintering.  相似文献   

6.
Creep Mechanism of Polycrystalline Yttrium Aluminum Garnet   总被引:1,自引:0,他引:1  
The high-temperature deformation behavior of a fine-grained polycrystalline yttrium aluminum garnet (YAG) was studied in the temperature range of 1400° to 1610°C using constant strain rate compression tests under strain rates ranging from 10−5/s to 10−3/s. The stress exponent of the creep rate, the activation energy in comparison with that for single-crystal YAG, and the grain size dependence suggest that Nabarro–Herring creep rate limited by the bulk diffusion of one of the cations (Y or Al) is the operative mechanism.  相似文献   

7.
The oxygen ion self-diffusion coefficient was determined for single-crystal and polycrystalline yttrium iron garnet (Y3Fe5O12). The rate of exchange between oxygen gas enriched with the stable isotope 18O and solid yttrium iron garnet was measured. Oxygen ion diffusion rates were found to be the same in single-crystal and 8μ polycrystalline Y3Fe5O12 between 1100° and 1400°C. This is in contrast to previous measurements of anion diffusion in several alkali halides and in AI2O3 where a strong dependence of diffusion rates on the presence of grain boundaries was found. Enhancing oxidation rates in dense, reduced yttrium iron garnet at low temperature by minimizing the final fired grain size in the sintering process does not appear to be possible on the basis of the results obtained in this investigation. The temperature dependence of the diffusion coefficient of oxygen measured at 100 torr can be represented by D = 0.40 exp (-65.4/RT) cm2 per second.  相似文献   

8.
The oxidation kinetics were determined for single-crystal SrTiO3 by measuring the time and temperature dependence of the weight gain of reduced crystals. The oxidation can be described as a diffusion-controlled process. The calculated diffusion coefficients between 850° and 1460°C are represented by D = 0.33 exp (-22.5 ± 5.0 kcal/ RT ) cm2/sec. Directly measured oxygen ion diffusion coefficients in the same temperature interval reported earlier are interpreted as being extrinsic and can be represented by D = 5.2 × 10−6 exp (-26.1 ± 5.0 kcal/ RT ) cm2/sec, where the activation energy is for mobility only. Assuming that the calculated diffusion coefficients are for vacancy diffusion and the two activation energies are equivalent within experimental error, a vacancy concentration (fraction of vacant lattice sites), [O□], fixed by impurities in the fully oxidized crystal is calculated to be 1.6 × 10−5 by virtue of the relation between the oxygen self-diffusion coefficient, D02-, and the oxygen vacancy diffusion coefficient, Do□ ; D o2-= [O□] D o□ where the oxygen ion concentration [O2-] is taken as unity.  相似文献   

9.
The chemical diffusion coefficient was measured for undoped, single-crystalline NiO at 900° to 1200°C and within an oxygen partial pressure of 10−5 to 0.21 atm. Electrical conductivity was used to monitor the reequilibration kinetics after the oxygen pressure was suddenly changed over the initially equilibrated NiO crystal. The chemical diffusion coefficient was calculated vs the reequilibration degree indicating the most stable range of investigations. The chemical diffusion coefficient value is virtually the same for the oxidation and reduction experiments, giving, respectively: Dchem.=(1.64 × 10−2) exp[-(22,480±800)/RT] Dchem.=(9.68 × exp[-(21,430±2600)/RT] It has been stated that chem is independent of the oxygen pressure and thus of oxide composition. The electrical conductivity depends on the oxygen partial pressure in the power (l/n) = (1/5.45), indicating that doubly ionized cation vacancies are the predominant defects. Deviation from the linear dependence of log α vs logpo2 was observed at <10−5 atm, indicating formation of anion vacancies of interstitials.  相似文献   

10.
The influence of sintering atmosphere on the final-stage sintering of ultra-high-purity alumina has been investigated. Model final-stage microstructures were tailored via a latex sphere impregnation and burnout technique. Critical experiments have been conducted to quantitatively examine the influence of the oxygen partial pressure on the final-stage sintering kinetics. Samples were sintered at 1850°C in either dry hydrogen ( P o2∼ 3 × 10−17 atm) or wet hydrogen P o2∼ 5 × 10−10 to 2 × 10−11 atm), and their microstructures were characterized as a function of sintering time, Sintering in dry hydrogen decreased the susceptibility of the final-stage microstructure to pore/boundary breakaway. In the kinetic analysis, the variation in the number of pores per grain, N g, was taken into account. It was found that in both atmospheres, the densification rate was controlled by grain boundary diffusion, and that sintering in dry hydrogen increased the densification rate by a factor of 2.25. In addition, it was determined that the grain growth rate in both atmospheres was controlled by the rate of surface diffusion of matter around the pores and that sintering in dry hydrogen enhanced the grain growth rate by a factor of 5.6. The overall effect of the dry hydrogen atmosphere was that it enhanced the coarsening rate relative to the densification rate by a factor of 2.5, and consequently shifted the grain size-density trajectory to much lower densities for a given grain size.  相似文献   

11.
Symmetrical Σ7 tilt grain boundaries of alumina (Al2O3) were studied using bicrystals. Three types of Σ7 boundaries were successfully fabricated, that is, rhombohedral twin (Σ7{1[Onemacr]02}) and two types of [0001] symmetrical tilt grain boundaries with grain-boundary planes {4[Fivemacr]10} and {2[Threemacr]10} (Σ7{4[Fivemacr]10} and Σ7{2[Threemacr]10}). Their atomic structures and grain-boundary energies were investigated using high-resolution transmission electron microscopy (HRTEM) and a thermal grooving technique, respectively. HRTEM observations showed that the Σ7{1[Onemacr]02} boundary had a completely symmetrical atomic arrangement with respect to the grain-boundary plane. In contrast, Σ7{2[Threemacr]10} and Σ7{4[Fivemacr]10} boundaries exhibited asymmetrical atomic structures, which were confirmed by analyzing the atomic configurations using static lattice calculations. Thermal grooving experiments showed that the grain-boundary energies strongly depended on the properties of the grain-boundary planes.  相似文献   

12.
The influence of yttrium doping on the microstructure and microchemistry of hot-pressed α-alumina was investigated using a combination of electron microscopy techniques. The implications of microstructure and microchemistry on the improved creep behavior of the doped material are discussed. The samples doped only with yttrium had a bimodal grain-size distribution that was strongly correlated to the frequency and distribution of Y3Al5O12 (YAG) precipitates in the microstructure. Yttrium segregated to most of the grain boundaries, with a normal excess concentration of Gamma= 3.3 ± 0.9 atoms/nm2 at random boundaries. Two types of twin boundaries (Sigma3 and Sigma7) accommodated no yttrium. None of the boundaries or triple-point junctions contained a glassy grain-boundary phase. Strong interaction of the grain boundaries and dislocations with YAG precipitates indicated a pinning mechanism by the precipitates. Yttrium doping did not appear to favor formation of special boundaries in α-alumina.  相似文献   

13.
Diffusion measurements were made between 1000 and 1300 K on films of In2O3 by electrochemical techniques using an yttria-stabilized zirconia solid electrolyte. At atmospheric oxygen pressures, diffusion invariably occurred via an oxygen interstitial mechanism. The diffusion coefficient decreased with decreasing oxygen pressure with a P O21/2 dependence. Near 1.0 Pa P O2the mechanism began to change to a vacancy mechanism which dominated at P O2 <10−3 Pa, where diffusivity increased with further decrease in oxygen pressure according to a P O2−1/2 dependence. Activation energies for interstitial and vacancy diffusion were 166 and 190 kJ/mol, respectively.  相似文献   

14.
Surface, grain-boundary, and volume inter diffusion coefficients for the NiO-Al2O3 system were measured concurrently by using a diffusion couple consisting of an A12O3 bicrystal and an NiO single crystal. The A12O3 bicrystals having various tilt angles were fabricated by firing 2 single crystals to be joined in an H2 atmosphere at 1800°C for 30 h. Diffusion profiles over the surface, along the grain boundary, and in the bulk of the bicrystal were determined with an electron probe microanalyzer. Mathematical analysis of the diffusion profiles gives D s = 7.41×10-2 exp (-35,200/ RT ), D gb = 2.14×10-1 exp (-63,100/ RT ) (tilt angle =30°), and D v = 1.26×104 exp (-104,000/ RT ). The grain-boundary diffusion coefficient increases with the mismatch at the boundary.  相似文献   

15.
When partially sintered cubic ZrO2–10 mol% Y2O3 specimens are heat-treated at 1500°C with 5MgO·95(ZrO2–10 mol% Y2O3) powder mixture in the pores, the intergranular boundaries, which may be either grain boundaries or thin glass films, migrate, leaving behind them a new solid solution slightly enriched with MgO but depleted of Y2O3. The boundary curvatures generally increase during the migration and the average migration distance initially increases linearly with the heat treatment time. The observed boundary migration behavior is similar to that observed previously in a number of metallic systems, and its driving force is believed to arise from the coherency strain in the thin solute diffusion zone ahead of the moving boundaries.  相似文献   

16.
The grain-boundary diffusion product, D'δ , of 51Cr in MgO and Cr-doped MgO as a function of grain-boundary orientation and point-defect concentration was determined at T =1200° to 1450°C. A large degree of anisotropy was found in the grain-boundary diffusion behavior in MgO. The ratio of D'δ|| parallel to D'δ perpendicular to the growth direction, D'||/D' , is 102 for a 5° (100) tilt boundary, decreased to ∼2 in boundaries with tilt angles > 10°. The decrease in D'||/D' is due to a large increase in D' with increasing tilt angle. The results indicate that grain-boundary diffusion in MgO is connected to the orientation of dislocations and the mechanism is one of dislocation pipe diffusion. The grain-boundary diffusion product D'δ increases with increasing Cr concentration in MgO and is ∼4 times larger for MgO containing 0.56 at. % Cr than for the undoped MgO. For all bicrystals studied, the activation energies are within 180 ± 20 kJ/mol which is 60% of the activation energy for 51Cr diffusion in undoped MgO.  相似文献   

17.
Self-diffusion coefficients for the oxygen ion in single-crystal Mn-Zn ferrite were determined by the gas-solid isotope exchange technique. The oxygen volume diffusion coefficients can be expressed as D =6.70 × 10−4 exp (-330 (kJ /mol) /RT)m2/s (>1350°C), D=3.94 × 10−10 exp (−137 (kJ/mol)/RT)m2/s (1100° to 1350°C), and D=7.82 × 104 exp (−507 (kJ/mol)/RT)m2/s (<1100°C).  相似文献   

18.
The electrical conductivity of polycrystalline Y2O3 has been studied as a function of the partial pressure of oxygen (10–14 to 105 Pa) at 900° to 1500°C in atmospheres saturated with water vapor at 12°C or dried with P2O5. Yttria is a p -conductor at high oxygen activities. The p -conductivity increases with increasing P O2 and decreases with increasing PH2O. At low oxygen activities the oxide is a mixed ionic/electronic conductor. The ionic conductivity is approximately independent of P O2 and increases with increasing P H2O. In the Y2O3 samples, excesses of lower-valent cation impurities (in the 10 to 100 mol-ppm range) are the dominating negatively charged defects, and in the presence of water vapor they are compensated by interstitial protons. At high P H2O levels additional protons are probably compensated by interstitial oxygen ions. At high temperatures (±1100°C) and for high P O2 and low P H2O, the protons are no longer dominant, and the lower-valent cations are mainly compensated by electron holes. The electrical conductivity exhibits hysteresis-like effects which are interpreted in terms of segregation/desegregation of impurities at grain boundaries. The mobility of electron holes in yttria at 1500°C is estimated to be of the order of magnitude of 0.05 cm2. s–1. V–1  相似文献   

19.
Using a novel combustion method, Eu-doped Eu:yttrium aluminum garnet (YAG) and Eu:YSAG powders, and transparent Eu:YSAG ceramics were fabricated. The optical properties of these transparent ceramics have been measured, and a reduced peak splitting of Eu3+ for 5D07F1 and 5D07F2 was observed when 10 at.% Al3+ was substituted by Sc3+. The enhanced symmetry of the Eu sites in YAG lattice, which resulted from the expanded YSAG lattice by Sc3+ doping, is the main reason for the reduced peak splitting.  相似文献   

20.
Transparent Ce:YAG (Ce:Y3Al5O12) and Ce:YSAG (Ce:Y3Sc x Al5− x O12) ceramics have been successfully fabricated using Sc3+ to substitute for Al3+ in Ce:YAG. The effect of Sc substitution on the luminescent properties of Ce:YAG has been investigated. At the substitution level of 20 at.% of Sc3+ for Al3+, the emission intensity of Ce:YSAG is the highest. Meanwhile, the doping of Sc into Ce:YAG lattice broadened both the absorption and emission bands, which is believed to be due to the inhomogeneous broadening of the 5 d energy level of Ce3+ caused by the Sc3+ substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号