首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Using the CO2- and N2-assisted atomization processes, the production of ibuprofen/lipid composite microparticles is investigated, in which the lipid includes myristic acid and tripalmitin. The produced composite particles show similar morphology to that of the pure lipids obtained by the same process. In the case of the N2-assisted process, the average size of composite particles is slightly larger than that of the pure lipid particles due to the difficulty of solidification when using N2. In the case of the CO2-assisted process, the average size of composite particles is slightly smaller than that of the pure myristic acid particles, but slightly larger than that of the pure tripalmitin particles. The dissolution study reveals that the drug release from the ibuprofen/myristic acid particles is enhanced in comparison with that of the unprocessed ibuprofen. For the particles produced by the N2-assisted process, the X-ray diffraction (XRD) patterns clearly indicate the encapsulation of ibuprofen into myristic acid. The obtained ibuprofen/tripalmitin composite particles with 5% or 20% of ibuprofen (in mass) evidently show the controlled drug release: only about 20% of the drug is released in 500 min from the ibuprofen/tripalmitin composite particles consisting of 20% ibuprofen prepared by the CO2-assisted process, and the same release is obtained from the ibuprofen/tripalmitin composite particles containing 5% ibuprofen prepared by the N2-assisted process.  相似文献   

2.
A high-pressure polar light microscopy approach was proposed and developed to study the melt crystallization behaviors of myristic acid and ibuprofen respectively in CO2 at different pressures and crystallization temperatures. The crystallization kinetics was analyzed by the Avrami equation. Results revealed that the crystallization rates of both myristic acid and ibuprofen increased with the CO2 pressure, while the crystallization activation energy of ibuprofen decreased (more negative) with the increase of CO2 pressure. On the other hand, the crystallization rate of ibuprofen decreased with the increase of the crystallization temperature at fixed pressure. However, the presence of CO2 did not change the nucleation or growth patterns of myristic acid and ibuprofen, as indicated by the analyzed results of the Avrami equation. The X-ray diffraction (XRD) analysis further confirmed that CO2 had no influence on the crystal form of myristic acid or ibuprofen. This study revealed that the crystallization behaviors of myristic acid and ibuprofen were evidently different from those of polymers in CO2 reported in the literature.  相似文献   

3.
C/CMS composite membranes derived from poly(furfuryl alcohol) (PFA) polymerized by iodine catalyst were prepared. Gas separation performance was investigated by molecular probe study with pure gases (H2, CO2, O2, N2, and CH4) at 25 °C. The pyrolysis behaviour of PFA was studied by TG and DTG. The surface morphology of C/CMS composite membranes was observed by SEM and HRTEM. The results show a C/CMS composite membrane with uniform and defect-free thin top layer can be prepared by the PFA liquid in only one coating step. The C/CMS composite membranes have excellent gas separation properties for the gas pairs such as H2/N2, CO2/N2, O2/N2 and CO2/CH4, the permselectivities for above gas pairs in same sequence were 124.72, 12.74, 9.12 and 15.91 respectively. Compared to carbon membranes derived from PFA polymerized by acid catalyst, the carbon membranes obtained from PFA polymerized by iodine catalyst have slightly lower permselectivity, but higher permeance.  相似文献   

4.
Ordered mesoporous silica/carbon composite membranes with a high CO2 permeability and selectivity were designed and prepared by incorporating SBA-15 or MCM-48 particles into polymeric precursors followed by heat treatment. The as-made composite membranes were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and N2 adsorption, of which the gas separation performance in terms of gas permeability and selectivity were evaluated using the single gas (CO2, N2, CH4) and gas mixtures (CO2/N2 and CO2/CH4, 50/50 mol.%). In comparison to the pure carbon membranes and microporous zeolite/C composite membranes, the as-made mesoporous silica/C composite membranes, and the MCM-48/C composite membrane in particular, exhibit an outstanding CO2 gas permeability and selectivity for the separation of CO2/CH4 and CO2/N2 gas pairs owing to the smaller gas diffusive resistance through the membrane and additional gas permeation channels created by the incorporation of mesoporous silicas in carbon membrane matrix. The channel shape and dimension of mesoporous silicas are key parameters for governing the gas permeability of the as-made composite membranes. The gas separation mechanism and the functions of porous materials incorporated inside the composite membranes are addressed.  相似文献   

5.
Permeability and selectivity of pure gas H2, CO2, O2, N2 and CH4 as well as a mixture of CO2/N2 for sulfonated homopolyimides prepared from 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTDA) and 2,2-bis[4-(4-aminophenoxy)phenyl] hexafluoro propane disulfonic acid (BAPHFDS) were measured and compared to those of the non-sulfonated homopolyimide having the same polymer backbone. The polyimide in a proton form (NTDA-BAPHFDS(H)) displayed higher selectivity of H2 over CH4 without loss of H2 permeability. Strong intermolecular interaction induced by sulfonic acid groups decreased diffusivity of the larger molecules. The CO2/N2 (19/81) mixed gas permeation was investigated as a function of humidity. With increasing relative humidity from 0% RH to 90% RH, the CO2 permeability for NTDA-BAPHFDS(H) polyimide increased by more than one order of magnitude, and the selectivity of CO2/N2 also increased twice or more. On the other hand, the gas permeability for the non-sulfonated polyimide slightly decreased with increasing humidity. NTDA-BAPHFDS(H) polyimide displayed a CO2 permeability of 290×10−10 cm3 (STP) cm/(cm2 s cmHg) and a separation factor of CO2/N2 of 51 at 96% RH, 50 °C and total pressure of 1 atm.  相似文献   

6.
Particles of lysozyme in the range of 0.1–5 μm were generated by high pressure CO2 or N2 (at pressures between 8 MPa and 25 MPa) from aqueous ethanol solutions using an atomization process similar to the supercritical assisted atomization technology. Perfect nanosized spheres of lysozyme were produced using both supercritical fluids. However, while N2 assisted atomization-produced spheres at all experimental conditions reported here, supercritical CO2 assisted atomization produced particles of two distinct morphologies depending on the pre-mixing conditions. This work shows that CO2 assisted atomization produces particles by two different mechanisms depending on the mixture pre-expansion phase equilibria conditions: anti-solvent crystallization and spray drying crystallization. Depending on the governing precipitation mechanism (anti-solvent or spray drying), fibers or spherical particles were obtained with CO2. Lysozyme activity was severely affected by pure anti-solvent processing, while N2 processed lysozyme conserved mostly its activity.  相似文献   

7.
In this study, gas separation properties of Matrimid/MIL-53 mixed matrix membranes with different MOF weight percentages (0–20 wt.%) were investigated. TEM, XRD and DLS analysis were implemented to investigate MIL-53, structure and particles size distribution. SEM, FTIR, DSC and TGA analyses were conducted to characterize the fabricated membranes. The SEM images of these membranes showed good adhesion between polymer and particles, although for 20% MIL-53 loading, particles agglomeration was observed in some areas. Moreover, surface images of the membranes showed adequate dispersion of the particles in the polymer matrix, especially at lower MOF loadings. The permeability of pure CO2 and CH4 gases for all membranes were measured and the ideal CO2/CH4 selectivity was calculated. CH4 permeability of membranes increased slightly as the percentage of loading increased. At 20 wt.% MOF loading, void formation led to a significant increase in CH4 permeability (300% over pure Matrimid). CO2 permeability showed the same trend; there was a 94% increase in permeability compared to pure Matrimid for 15 wt.% MMMs. CO2/CH4 selectivity also increased as MOF loading increased. The highest selectivity was shown for 15 wt.% MOF loading. This membrane had 84% growth in selectivity over pure Matrimid. Although at 20 wt.% MIL-53 loading, membrane separation performance was destroyed.  相似文献   

8.
A novel, economical, and energy-efficient process to produce nanostructured particles of several perovskite oxides, such as ferroelectrics BaTiO3, SrTiO3 and LiNbO3, is described. This process, referred to as carbon combustion synthesis of oxides (CCSO) is a modified SHS process that uses carbon as a fuel instead of a pure metal. In CCSO of nanostructured materials, the exothermic oxidation of carbon nanoparticles (∼5 nm) with a surface area of 80 m2/g generates a thermal reaction wave with temperature of up to 1200°C that propagates through the solid submicron reactant mixture, converting it to the desired complex oxide product. The carbon is not incorporated in the solid product since it is released in a gaseous form (CO2) from the sample. The quenching front method combined with XRD and Raman spectroscopy revealed that crystalline tetragonal BaTiO3 particles formed in the early stage of the combustion, before the temperature reached its maximum. A major difference between the thermal transport processes during CCSO and conventional SHS is the extensive emission of CO2. The release of CO2 enables synthesis of highly porous (up to 70%) powders having a particle size in the range of 60–80 nm with a surface area of up to 12.4 m2/g.   相似文献   

9.
A barium‐containing three‐way automotive emission catalyst was submitted to a NOx storage step in flowing lean gas mixture containing 340 ppm NO and 8 vol% O2 in helium. NOx release was carried out in the 250–550°C temperature range, either in pure helium or in the presence of a 10 vol% CO2 in helium mixture. It was shown that at 450–550°C all of the stored NOx on the barium trap can be released fastly in the CO2‐containing gas mixture or, after a longer time, in pure helium: these data show that NOx release can occur in the absence of a reducing agent. The NOx release was not complete at 350°C and did not occur at 250°C. The assisting effect of CO2 as regards to NOx release was interpreted in terms of the existence of the CO2,gas + *NO2,stored ⇌ *CO2,stored + NO2,gas equilibrium, suggesting the competitive storage of CO2 and NO2 for a unique type of barium storage sites (*). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Composite layer containing postmodified MIL‐53 (P‐MIL‐53) was exploited to be coated on as‐fabricated asymmetric hollow fiber membrane for improving gas separation performance. The morphology and pore size distribution of P‐MIL‐53 particles were characterized by SEM and N2 adsorption isotherm. The EDX mapping and FTIR spectra were performed to confirm the presence of P‐MIL‐53 deposited on the outer surface of hollow fiber membranes. The results of pure gas permeation measurement indicated that incorporation of P‐MIL‐53 particles in coating layer could improve permeation properties of hollow fiber membranes. By varying coating times and P‐MIL‐53 content, the membrane coated with PDMS/15%P‐MIL‐53 composite by three times achieved best performance. Compared to pure PDMS coated membrane, CO2 permeance was enhanced from 29.96 GPU to 40.24 GPU and ideal selectivity of CO2/N2 and CO2/CH4 also increased from 23.28 and 26.95 to 28.08 and 32.03, respectively. The gas transport through composite membrane was governed by solution‐diffusion mechanism and CO2 preferential adsorption of P‐MIL‐53 contributed to considerable increase of CO2 solubility resulting in accelerated permeation rate. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44999.  相似文献   

11.
超临界CO2辅助聚合物加工   总被引:1,自引:0,他引:1       下载免费PDF全文
赵玲  刘涛 《化工学报》2013,64(2):436-442
近年来,以超临界CO2替代聚合物加工过程中大量使用的有机溶剂实现超临界CO2辅助聚合物加工过程已引起人们越来越多的关注。CO2在聚合物中的溶解扩散可导致其结构和形态的变化,能够溶胀增塑聚合物并且将溶解于其中的小分子物质携带输运到聚合物基体中,进而影响聚合物的结晶及晶型转变行为,聚合物/CO2体系界面张力以及聚合物/CO2体系流变行为等基本物性的变化。利用聚合物基本物性的变化可实现CO2辅助聚合物接枝反应,CO2辅助聚合物渗透小分子物质以及CO2辅助聚合物发泡等超临界CO2辅助聚合物加工过程的应用。结合本研究室的实例,探讨了CO2作用下等规聚丙烯和间规聚丙烯的结晶行为以及一种多晶型聚合物--等规聚丁烯-1的晶型转变行为;探讨了利用CO2对等规聚丙烯、聚乳酸和聚酯三种典型的低熔体强度结晶聚合物具有的不同诱导结晶作用,调控聚合物的结晶行为,使其具备发泡所需的熔体强度,制备了具有不同结构特征的发泡聚合物材料。  相似文献   

12.
We have characterized the gene encoding fatty acid α-hydroxylase, a cytochrome P450 (P450) enzyme, from Sphingomonas paucimobilis. A database homology search indicated that the deduced amino acid sequence of this gene product was 44% identical to that of the ybdT gene product that is a 48 kDa protein of unknown function from Bacillus subtilis. In this study, we cloned the ybdT gene and characterized this gene product using a recombinant enzyme to clarify function of the ybdT gene product. The carbon monoxide difference spectrum of the recombinant enzyme showed the characteristic one of P450. In the presence of H2O2, the recombinant ybdT gene product hydroxylated myristic acid to produce β-hydroxyristic acid and α-hydroxymyristic acid which were determined by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry. The amount of these products increased with increasing reaction period and amount of H2O2 in the reaction mixture. The amount of β-hydroxyl product was slightly higher than that of α-hydroxyl product at all times during the reaction. However, no reaction products were detected at any time or at any concentration of H2O2 when heat-inactivated enzyme was used. HPLC analysis with a chiral column showed that the β-hydroxyl product was nearly enantiomerically pure R-form. These results suggest that this P450 enzyme is involved in a novel biosynthesis of β-hydroxy fatty acid.  相似文献   

13.
Euglena gracilis was cultured under both heterotrophic and phototrophic growth conditions using ethanol, glucose or CO2 as the major carbon source. Total fatty acid analyses indicated that ethanol produced more highly unsaturated acids than did glucose under both growth conditions. Growth in the light on CO2 yielded a very high content of 18∶3, 16∶3 and 16∶4 (33%), compared to ethanol (11%) or glucose (10%). These two preformed carbon sources enhanced the content of the C20 and C22 polyenes compared to CO2, and growth in the dark on to CO2, and growth in the dark on ethanol caused a further increase in these polyenes. Growth in the dark on glucose caused only a slight increase of the C20 and C22 polyenes compared to growth in the light on this carbon source. When the fatty acid patterns of the two dark-grown heterotrophs were compared, two observations were quite evident. First, there was a two-fold increase in the saturated acids in the cells grown on glucose. This was largely due to myristic acid. Second, the C20 and C22 polyenes were almost twice as concentrated in the cells grown on ethanol.  相似文献   

14.
The synthesis and characterization of a thermosensitive chitosan (CS)/poly(vinyl alcohol) (PVA) hydrogel containing nanoparticles with different charges for drug delivery were reported. Through the electrostatic effect of –N+(CH3)3 and –COO, the nanoparticles of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride(HTCC)–carboxymethyl chitosan (CM) were prepared. The nanoparticles with different charges were obtained by the different ratio of –N+(CH3)3 and –COO, which were suitable for drug delivery with opposite charges, such as propranolol and diclofenac sodium, respectively. The release of the positive drug was the slowest with the hydrogels containing negative nanoparticles. Similarly, the release of the negative drug was the slowest with the hydrogels containing positive nanoparticles. However, the releases of the two drugs were both the fastest with the pure hydrogels. It indicated the addition of nanoparticles was helpful to slow the suitable drug release. Though the nanoparticles did not reinforce the gel strength, the electrostatic effect between nanoparticles and drugs reduced the burst release. Therefore, the composite gels are attractive for applications as carriers for drug delivery.  相似文献   

15.
Different top layer fabrication methods (amine-first, acid-first, spin coating), organic phase solvents (hexane, heptane, mixed hexane/heptane), acid acceptors (triethylamine, sodium carbonate, sodium hydroxide), and surfactant sodium dodecyl sulfate concentrations (0, 0.05, and 0.1 wt%) were utilized to fabricate thin film composite polyamide membranes for CO2/N2 separation. The results, according to an L9 orthogonal array of Taguchi approach, showed that employing acid-first method increases both CO2 permeance and CO2/N2 selectivity of the membranes at a feed gas pressure of 3 bars. On the other hand, sodium hydroxide, and triethylamine should be used, as acid acceptors, to maximize CO2 permeance and CO2/N2 selectivity, respectively. Moreover, the use of hexane solvent and 0 wt% surfactant led to maximum permeance, while, hexane solvent and 0.1 wt% surfactant were needed to reach the highest selectivity. The above level setting of synthesis parameters also resulted in the minimum sensitivity of the fabrication process to the noise factors effects. As shown by the analysis of variance, acid acceptor, and organic solvent types were the most influential parameters on CO2 permeance and CO2/N2 selectivity, respectively. The effects of fabrication method and surfactant concentration, as single factors, on permeation/selectivity responses were also investigated.  相似文献   

16.
The sorption equilibria for CO2 and N2 in dry chitosan membrane at 20 and 30 ‡C were measured by a pressure decay method. The steady-state permeation rates for CO2 and N2 in dry and wet (swollen with water vapor) chitosan membranes at 20 and 30 ‡C were measured by a variable volume method. The sorption equilibrium for N2 obeyed Henry’s law, whereas that for CO2 was described apparently by a dual-mode sorption model. This non-linear sorption equilibrium for CO2 could be interpreted by the interaction of sorbed CO2 with the chitosan matrix expressed as a reversible reaction. The logarithm of the mean permeability coefficient for CO2 in dry chitosan membrane increased linearly with upstream gas pressure. A linear increase of the logarithmic mean permeability coefficient for CO2 with the pressure could be interpreted in terms of a modified free-volume model. The mean per-meability coefficient for N2 in dry chitosan membrane only slightly increased with upstream gas pressure. The per-meabilities for CO2 and N2 in wet chitosan membrane increased by 15 to 17 times and 11 to 15 times, respectively, as compared to those in the dry membrane.  相似文献   

17.
Ni–Nb composite electrocoatings were obtained on carbon steel from Watts bath, containing suspended 20 μm size niobium powders. The effect of cathodic current density, electrolyte stirring rate and concentration of Nb particles in the bath on the deposit morphology and texture, volume fraction of co-deposited Nb particles and microhardness was investigated. The Ni–Nb composite layers presented a rough morphology with randomly oriented Ni grains, whereas pure Ni coatings obtained under the same experimental conditions were smooth and showed highly preferred orientation in the [110] or [100] direction. Stirring rate of the electrolyte and concentration of Nb particles in the bath are the main parameters affecting the incorporation of Nb particles. The Nb incorporated volume fraction was 11–14%, 17–19%, 27–32% and 34–37% for the 20 g L−1 Nb/550 rpm, 20 g L−1 Nb/400 rpm, 40 g L−1 Nb/400 rpm and 40 g L−1 Nb/550 rpm conditions, respectively. The microhardness of the Ni–Nb composite coatings obtained at 20 and 40 mA cm−2 was higher than that of pure Ni layers, due to grain refining. Incorporation of Nb particles in Ni coatings improved the corrosion resistance of the deposits in NaCl and H2SO4 solutions.  相似文献   

18.
The extraction of oil from fungi (Mortierella ramanniana var.angulispora) was studied using carbon dioxide (CO2), nitrous oxide (N2O), trifluoromethane (CHF3) and sulfur hexafluoride (SF6) under supercritical conditions. The oil solubility was highest in SC-N2O followed by SC-CO2, while both SC-CHF3 and SC-SF6 showed poorer solvent power. The recorded oil solubilities at 333 K and 24.5 MPa were 2.3 wt% in N2O, 0.48 wt% in CO2, 0.0099 wt% in CHF3 and 0.0012 wt% in SF6. The oil solubilities in SC-N2O and SC-CO2 were measured over the pressure range 15.7–29.4 MPa and at temperatures ranging from 313–353 K. N2O always showed greater solvent power than did CO2 at the same temperature and pressure. The solvent power of a supercritical fluid increases with density at a given temperature, and increases with temperature at constant density. The change in neutral lipid composition of the extracted oil with the extraction ratio was measured. Free fatty acids or diglycerides were extracted more easily than triglycerides or sterol esters. The change in fatty acid composition was also measured. The proportion of γ-linolenic acid in the extract remained constant throughout the extraction.  相似文献   

19.
Nanoporous silica membrane without any pinholes and cracks was synthesized by organic templating method. The tetrapropylammoniumbromide (TPABr)-templating silica sols were coated on tubular alumina composite support ( γ-Al2O3/ α-Al2O3 composite) by dip coating and then heat-treated at 550 °C. By using the prepared TPABr templating silica/alumina composite membrane, adsorption and membrane transport experiments were performed on the CO2/N2, CO2/H2 and CH4/H2 systems. Adsorption and permeation by using single gas and binary mixtures were measured in order to examine the transport mechanism in the membrane. In the single gas systems, adsorption characteristics on the α-Al2O3 support and nanoporous unsupport (TPABr templating SiO2/ γ-Al2O3 composite layer without α-Al2O3 support) were investigated at 20–40 °C conditions and 0.0–1.0 atm pressure range. The experimental adsorption equilibrium was well fitted with Langmuir or/and Langmuir-Freundlich isotherm models. The α-Al2O3 support had a little adsorption capacity compared to the unsupport which had relatively larger adsorption capacity for CO2 and CH4. While the adsorption rates in the unsupport showed in the order of H2> CO2> N2> CH4 at low pressure range, the permeate flux in the membrane was in the order of H2≫N2> CH4> CO2. Separation properties of the unsupport could be confirmed by the separation experiments of adsorbable/non-adsorbable mixed gases, such as CO2/H2 and CH4/H2 systems. Although light and non-adsorbable molecules, such as H2, showed the highest permeation in the single gas permeate experiments, heavier and strongly adsorbable molecules, such as CO2 and CH4, showed a higher separation factor (CO2/H2=5-7, CH4/H2=4-9). These results might be caused by the surface diffusion or/and blocking effects of adsorbed molecules in the unsupport. And these results could be explained by surface diffusion. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

20.
《Fuel》2003,82(15-17):2153-2159
A membrane-based gas–liquid contacting process was evaluated in this work for CO2 removal from flue gases. The absorption of CO2 from a CO2–N2 mixture was investigated using a commercial hollow fiber membrane contactor and water or diethanolamine as absorbing solvents. Significant CO2 removal (up to 75%) was achieved even with the use of pure water as absorbent. By using aqueous amine solutions and chemical absorption, mass transfer improved, and CO2 removal was nearly complete (∼99%). A mathematical model was developed to simulate the process and it was validated with experimental data. Results show that membrane contactors are significantly more efficient and compact than conventional absorption towers for acid gas removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号