首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new methodology for the preparation of single phase bimetallic Au–Pd on activated carbon (AC) has been recently developed and now used for preparing Au/Pd catalysts at different atomic ratio. The bimetallic catalysts have been tested in the liquid phase oxidation on glycerol in water using oxygen as the oxidant and compared with monometallic Au and Pd catalysts. We observed that strong synergistic effect is present in a large range of Au/Pd ratio, being maximized for Au90–Pd10 composition. Gold-rich composition showed an increased durability compared to palladium-rich alloy.  相似文献   

2.
We report a novel biochemical method based on the sacrificial hydrogen strategy to synthesise bimetallic Au/Pd nanoparticles supported on bacterial cells. The synergistic effect of Au/Pd over monometallic preparations was demonstrated in the oxidation of benzyl alcohol. The bioinorganic catalysts outperformed a commercial Pd catalyst (5% Pd/C) showing no deactivation and high selectivity towards benzaldehyde.  相似文献   

3.
Extended X-ray absorption fine structure (EXAFS) and X-ray diffraction (XRD) studies on supported bimetallic Pt/Pd diesel oxidation catalyst (Pt:Pd weight ratio 2:1) after various treatments were compared with those of monometallic Pd and Pt catalysts prepared under similar conditions. After calcination and thermal ageing, the coexistence of alloyed bimetallic Pt/Pd particles and of tetragonal PdO has been found in the bimetallic Pt/Pd catalyst. PdO is present in form of crystals at the surface of the Pt/Pd particles or as isolated PdO crystals on the support oxide. Bimetallic Pt/Pd nanoparticles were already formed in the Pt/Pd catalyst after calcination. Hydrogen treatment causes the formation of randomly alloyed Pt/Pd nanoparticles. In the thermally aged catalyst, a strong indication for an enrichment of Pt in the interior of the particle and of Pd at its outer shell was found. In the monometallic catalyst, the Pd is found to be completely oxidised already after calcination and to consist of metallic Pd in zero-valent state exclusively after reductive treatment. Ageing under hydrothermal oxidative atmosphere leads to complete oxidation of the Pd species. After calcinations, the catalytic activity of the Pt/Pd catalyst studied is comparable to those of monometallic Pt catalysts. In contrast to monometallic Pt catalysts, the alloyed system show significant stabilisation against sintering and a much higher activity after the thermal ageing step. This stabilisation of dispersion and the presence of Pt atoms on the surface of the Pt/Pd particles are considered to cause the higher catalytic activity of metallic particles for the oxidation of carbon monoxide and propene after ageing.  相似文献   

4.
采用硼氢化钠一步还原法,首先得到PdAg和PdAu双金属合金纳米颗粒.利用XRD、TEM以及紫外可见光光谱技术对其进行了表征分析.结果表明,PdAg和PdAu两种合金都具有纳米颗粒分散均匀且颗粒尺寸小等优点.随后采用胶体沉积法将两种合金均匀地负载到Al2O3上,成功获得PdAg/Al2O3和PdAu/Al2O3两种金属纳米催化剂.在邻氯硝基苯加氢反应中,与Pd/Al2O3纳米催化剂相比,PdAg/Al2O3催化剂显示出95.5%的选择性,而PdAu/AI2O3催化剂的选择性高达98.7%,这可能归因于Pd与Ag或Au金属间的协同效应.  相似文献   

5.
Au/ZnO, Pd/ZnO and Au–Pd/ZnO catalysts were prepared by PVP-stabilized reduction method by C2H5OH. The catalysts have been used successfully for hydrogen production by partial oxidation of methanol (POM). The influence of Au, Pd and Au–Pd on the performance of supported catalysts for POM has been investigated. The prepared samples were characterized by ICP, XRD, BET, TPR and TPD. The results show that the Au–Pd/ZnO catalyst are more active and exhibit higher hydrogen selectively compared to the Pd/ZnO and Au/ZnO catalyst, the methanol conversion of 99.5% and hydrogen selectivity of 65.6% were obtained at 573 K. The enhanced activity and stability of the bimetallic Au–Pd/ZnO catalyst has been explained in terms of the higher dispersion and basic density, smaller particles of gold and synergetic effect between gold and palladium.  相似文献   

6.
Mono and bimetallic catalysts based on Au and Pd nanoparticles were synthesized by sol immobilization method. The catalytic oxidation of polyethylene glycol dodecyl ether was performed using as-synthesized supported catalyst. The use of water as solvent and dioxygen as oxidant makes the reaction interesting from both an economic and environmental point of view. For 100 min, the conversion of polyethylene glycol dodecyl ether using Au–Pd/C bimetallic catalyst was 38%, showing an increase of 9% for Au/C and 15% for Pd/C respectively indicating that a synergetic effect exists between Au and Pd. For the Au–Pd/C catalyst, adding Au after the prior addition and reduction of Pd metal can form the most active catalyst.  相似文献   

7.
Monometallic Au, Pd and bimetallic Au-Pd catalysts supported on SiO2 were prepared by an impregnation method. Their activities on thiophene hydrodesulfurization (HDS) at atmospheric pressure are found to be as a function of calcination temperature of these catalysts. The bimetallic catalyst calcined in air at 400 °C gives the highest activity among them. The techniques including nitrogen physical adsorption, X-ray diffraction, transmission electron microscopy, and X-ray absorption near edge structure were employed to characterize the structure of these catalysts. The results indicate that the effect of gold particles in AuPd/SiO2 catalyst can facilitate the reduction of PdO phase as well as inhibit the formation of less active Pd4S phase. The promotional effect of partially oxidative gold and a little of Pd0 in AuPd/SiO2 catalyst is suggested to enhance the HDS activity. The formation of AuxPdy alloy phase improves the resistance to sulfur-poisoning of the bimetallic catalyst. The presence of partially oxidized gold particles is considered to be due to the inter-atomic charge transfer from the Au 5d to the Pd 5d band.  相似文献   

8.
Single phase Au–Pd and Au–Pt on carbon catalysts have been compared in the liquid phase oxidation of glycerol (representative for polyols) and n-octanol (representative for long chain aliphatic alcohol). The observed overall enhancement of catalytic activity appeared to be function of support, substrate and reaction conditions. Effect of substrate structure has been disentangled: synergistic effect between Au and Pt was maximized when polyol-like substrates were oxidized whereas Au–Pd based catalyst showed a more general match.  相似文献   

9.
Hydrogenation of acetylene has been investigated on Au/TiO2, Pd/TiO2 and Au-Pd/TiO2 catalysts at high acetylene conversion levels. The Au/TiO2 catalyst (avg. particle size: 4.6 nm) synthesized by the temperature-programmed reduction-oxidation of an Au-phosphine complex on TiO2 showed a remarkably high selectivity to ethylene formation even at 100% acetylene conversion. Au/TiO2 prepared by the conventional incipient wet impregnation method (avg. particle size: 30 nm), on the other hand, showed negligible activity for acetylene hydrogenation. Although the Au catalysts showed a high selectivity for ethylene, the acetylene conversion activity and catalyst stability were inferior to the Pd-based catalysts. Au-Pd catalysts prepared by the redox method showed high acetylene conversions as well as high selectivity for ethylene. Interestingly Au-Pd catalysts prepared by depositing Pd via the incipient wetness method on Au/TiO2 showed very poor selectivity (comparable to mono-metallic Pd catalysts) for ethylene. High-resolution transmission electron microscopy (TEM) studies coupled with energy dispersive X-ray spectroscopy (EDS) showed that while the redox method produced bimetallic Au-Pd catalysts, the latter method produced individual Pd and Au particles on the support.  相似文献   

10.
The liquid phase hydrogenation of succinic acid (SA) to γ-butyrolactone (GBL) and 1,4-butanediol (BDO) was investigated using ruthenium–cobalt bimetallic catalysts in a semi-batch slurry reactor. The doping of ruthenium (up to 1%) with cobalt resulted in increase (3–4 times) in the overall hydrogenation activity indicating a strong synergistic effect. Ru–Co bimetallic catalyst also influenced the product distribution by promoting specific hydrogenation steps in the overall reaction scheme. Based on the observed catalyst activity results, a speculative reaction pathway for cobalt as well as for ruthenium–cobalt catalyzed hydrogenation of succinic acid has been proposed.  相似文献   

11.
Alcohol oxidations under mild conditions using polyvinylpyrrolidone (PVP)-stabilized Au, Pd and bimetallic AuPd nanoparticle catalysts in aqueous solutions have been investigated. The catalytic activities of the nanoparticles towards the oxidation of benzyl alcohol, 1-butanol, 2-butanol, 2-buten-1-ol and 1,4-butanediol indicate that bimetallic 1:3 Au:Pd nanoparticles have higher catalytic activities than Au, Pd and other bimetallic AuPd nanoparticles, and that selectivities towards specific products can often be tuned using bimetallic particles. In addition, advantages and disadvantages for the use of such nanoparticle catalysts as mild, environmentally-friendly oxidation catalysts are examined.  相似文献   

12.
A series of bimetallic PdNi catalysts supported on mesoporous MCM-41 with different Ni content (Ni/Si ratio of 0.2–0.4) was synthesized. The effect of Pd addition to Ni-containing catalysts as well as the effect of the Ni content on the surface and catalytic properties of the catalysts was studied. The samples were characterized using various techniques, such as energy-dispersive X-ray spectroscopy, N2 adsorption–desorption isotherms, X-ray diffraction, thermogravimetric and differential analyses, X-ray photoelectron spectroscopy, high resolution transmission electron microscopy and temperature-programmed reduction. Reforming of methane with carbon dioxide was used as a test reaction. The results indicated that the addition of a small amount of Pd (0.5%) to Ni-containing catalysts leads to formation of small nano-sized, easy reducible NiO particles. Agglomeration of NiO as well as of metallic nickel phase over PdNi samples increased with increasing the Ni content. Formation of filamentous carbon over surface of spent monometallic Ni and bimetallic PdNi catalyst was observed. In spite of filamentous carbon deposition, the catalytic activity and stability of bimetallic PdNi catalysts are higher than those of monometallic Ni one. Within bimetallic system, the PdNi catalyst with Ni/Si ratio of 0.3 revealed the best performance and stability caused by presence of small nickel particles well dispersed on the catalyst surface.  相似文献   

13.
以Pd Cl2和Co(NO3)2为原料,采用分步乙二醇还原法制备了多壁碳纳米管负载Pd-Co复合纳米催化剂Pd-Co/CNT。利用TEM、XRD和XPS对催化剂的结构进行了表征,考察了其甲醇电氧化性能。结果显示,Co的引入使Pd催化剂的分散性得到改善,其电化学表面积可达39.7 m2/g。循环伏安测试表明,当Pd∶Co物质的量比为1∶0.2时,Pd-Co/CNT的甲醇氧化峰电流密度约为Pd/CNT的2.7倍。计时电流结果表明,Co的添加使催化剂的活性衰减比例由Pd/CNT的63.8%降至54.2%,显示出较强的抗中毒能力。Pd-Co复合催化剂性能的改善归因于Pd与Co之间的协同相互作用。  相似文献   

14.
Electrochemical and structural characteristics of various Pt-Pd/C bimetallic catalysts prepared by electroless deposition (ED) methods have been investigated. Structural analysis was conducted by X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy (EDS). Monometallic Pt or Pd particles were not detected by EDS, indicating the ED methodology formed only bimetallic particles. The size of the Pt-Pd bimetallic particles was smaller than those of a commercially available Pt/C catalyst. The morphology of the Pt on Pd/C catalysts was identified and corresponded to Pd particles partially encapsulated by Pt.The electrochemical characteristics of the lowest Pd loading catalyst (7.0% Pt on 0.5% Pd/C) for the oxygen reduction reaction (ORR) have been investigated by the rotating ring disk electrode technique. The electrochemical activity was equal or lower than the commercially available Pt/C catalyst; however, the amount of hydrogen peroxide observed at the ring was reduced by the Pd, suggesting that such a catalyst has the potential to decrease ionomer degradation in applications. The Pt on Pd/C catalysts also show a higher tolerance to ripening induced by potential cycling. Therefore, catalyst suitability cannot be judged solely by its initial performance; information related to specific degradation mechanisms is also needed for a more complete assessment.  相似文献   

15.
以SBA-15作为硬模板剂,吡咯作为碳源和氮源,制得的含氮中孔碳作为载体,采用吸附还原法分别制备了单Pd和Au-Pd双金属催化剂,并考察其在甲酸分解制氢反应中的催化性能。结果发现,Au-Pd/N-C比Au-Pd/C催化剂具有更高的甲酸分解活性,这可能是因为N的亲核作用促进了甲酸中H质子的脱除。由于Au-Pd之间的强相互作用,使Au的加入显著提高了Pd/N-C催化剂甲酸分解活性及其抗CO中毒能力,在50℃条件下,分解1 mol·L-1的甲酸初始转换频率(TOF)达到2 221 h-1。  相似文献   

16.
用液相还原法制备Pd-TiO2/C催化剂。用循环伏安法(CV)和线性扫描法(LSV)考察了催化剂对甲酸的电催化氧化活性。通过计时电流曲线检测催化剂对甲酸的稳定性。结果表明Pd/TiO2/C催化剂中Pd粒子电化学比表面积增大,Pd-TiO2/C催化剂稳定,催化活性比Pd/C催化剂有较大幅度的提高。  相似文献   

17.
The hydrogenation of acetophenone and its derivatives was studied using several supported Ni catalysts. Ni supported on zeolite Y catalyst offered the best hydrogenation activity. However, the activity of this catalyst decreases significantly on recycle and the extent of deactivation differs with respect to the substrate investigated. It is shown in this paper that a bimetallic Ni-Pt catalyst gives improved stability on recycle for hydrogenation of acetophenone and its derivatives. The role of zeolite Y support and a strong synergistic effect in a bimetallic Ni-Pt catalyst has been discussed.  相似文献   

18.
Electroless deposition has been used to prepare Cu–Pd/SiO2 bimetallic catalysts wherein initial Cu coverages are limited only to the pre-existing Pd surface. Cu loading on the Pd surface can be systematically varied by modification of deposition kinetic parameters. In this case deposition time was used as the kinetic variable for the preparation of a series of Cu–Pd catalysts. These materials have been characterized using atomic absorption, CO chemisorption, and FT-IR (adsorption of CO), and then evaluated for the hydrogenation of 3,4-epoxy-1-butene, a functionalized olefin having many potential reaction pathways. Catalyst performance and characterization results suggest that Cu is not distributed in a monodisperse manner on the Pd surface, indicating the existence of autocatalytic deposition of Cu on Cu sites. The FT-IR results suggest that although CO adsorption on all sites is suppressed by Cu addition, initial Cu deposition occurs more readily on certain sites. The bimetallic Cu–Pd sites that are formed exhibit unusually high activity for EpB conversion and formation of unsaturated alcohols and aldehydes. This bimetallic effect on catalyst activity and selectivity is best explained, not by the existence of either ligand or ensemble effects, but rather by the bifunctional nature of the Cu–Pd sites present on the surface of these catalysts.  相似文献   

19.
A systematic study of Au-promoted and unpromoted Pt/MgO/SBA-15 catalyst is developed to separate the promoter effect from electron transfer effect between Au and Pt. Multi-characterizations revealed that Au and Pt metals in these bimetallic catalysts mainly exist in the form of alloy, and the main role of Au is to reduce the size of AuPt alloy nanoparticles, thus enhancing the adsorption and activation of intermediate products. Through the optimization of various factors (including MgO content, Au/Pt molar ratio, reaction temperature and time), the Au1Pt2/MgO/SBA-15 (0.05) catalyst exhibits excellent catalytic activity and glyceric acid selectivity for the selective oxidation of glycerol. Density functional theory calculation confirmed that the synergistic effect between Pt and Au active sites could facilitate the oxidation of primary hydroxyl group by promoting the activation of C H bond and the oxidation of aldehyde group. The results may give insights on designing effective Pt based bimetallic catalyst for selective oxidation of glycerol.  相似文献   

20.
The selective hydrogenation of cyclopentadiene to cyclopentene has been studied in the liquid phase using Pd and Pd Me/Al2O3 bimetallic catalysts (Me = Mn, Ni, Co, W). The highest activity was obtained with Pd Co and Pd W/Al2O3. For these catalysts, no hydrogen or CO chemisorption was detected although Pd could be seen by XPS at 335·8 eV; it is considered that new species, more active for the selective hydrogenation of cyclopentadiene, appeared at the catalyst surface. The sulfur resistance towards thiophene has also been studied. It was observed that the highest sulfur resistance is coincident with the highest activity. XPS analysis shows that the poisoning species is thiophene adsorbed on the catalyst surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号