首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
王景慧  卢玲 《计算机应用研究》2023,40(5):1410-1415+1440
中文实体关系抽取多以字符序列处理文本,存在字符语义表征不足、长字符序列语义遗忘等问题,制约了远距离实体的召回率,为此提出了一种融合依存句法信息的关系导向型抽取方法。输入层以字符序列和基于同义词表示的词序列为输入;编码端用长短时记忆网络(LSTM)进行文本编码,并加入全局依存信息,用于产生关系门的表示;解码端加入依存类型信息,并在关系门的作用下,用双向长短时记忆网络(BiLSTM)解码得到实体关系三元组。该方法在SanWen、FinRE、DuIE、IPRE中文数据集上的F1值分别较基线方法提高5.84%、2.11%、2.69%和0.39%。消融实验表明,提出的全局依存信息和依存类型信息表示方法均可提升抽取性能,对长句和远距离实体的抽取性能也稳定地优于基线方法。  相似文献   

2.
依存分析和HMM相结合的信息抽取方法   总被引:1,自引:0,他引:1  
信息抽取是文本信息处理的一个重要环节,当前的信息抽取研究工作大多针对半结构化的文本。针对自由文本,提出一种依存分析和HMM相结合的文本信息抽取算法,该算法在运用依存分析对句子进行浅层句法分析的基础上制定相应规则,形成输入序列,结合HMM易于建立、适应性好、抽取精度较高的优势,实现自由文本的信息抽取。实验结果表明,新的算法在召回率、准确率和正确率指标上均有良好的性能,说明了算法的有效性,为文本信息的抽取提供了新思路。  相似文献   

3.
药物关系(Drug-Drug Interaction, DDI)抽取是生物医学关系抽取领域的重要分支,现有方法主要强调实体、位置等信息对关系抽取的影响。相关研究表明,依存信息对于关系抽取具有重要作用,如何合理利用依存信息是关系抽取研究中需要解决的问题。该文提出一种融合依存信息 Attention机制的药物关系抽取模型,衡量最短依存路径与句子的相关性,捕捉对实体间关系有用的信息。首先使用双向GRU(BiGRU)网络分别学习原句子和最短依存路径(Shortest Dependency Path,SDP)的语义信息和上下文信息,然后通过Attention机制将SDP信息与原句子信息融合,最后利用融合依存信息之后的句子表示进行分类预测。在DDIExtraction2013语料上进行了实验评估,模型F值为73.72%。  相似文献   

4.
基于核函数的蛋白质关系(PPI)抽取可以捕获结构化信息,取得了较高的性能,但其计算复杂度过高。该文结合词汇、句法等信息,重点探讨了依存信息对基于特征向量的蛋白质关系(PPI)抽取的影响。在多个PPI语料库上的实验表明,依存信息和基本短语块信息可以有效提高基于特征向量的PPI抽取性能。特别要指出,在AIMed语料上的PPI抽取取得了54.7的F测度,是目前基于特征向量的PPI抽取系统的最好水平。  相似文献   

5.
化学物与蛋白质之间的相互作用关系抽取对精准医学和药物发现等方面的研究有着重要作用.该文提出了一种基于最短依存路径和注意力机制的双向LSTM模型,并将其应用于化学物蛋白质关系抽取.在特征上综合考虑了最短依存路径上的词性、位置和依存关系类型等.在BioCreative VI CHEMPROT任务上的实验表明,该方法在基于依...  相似文献   

6.
杜宇 《信息与电脑》2011,(1):120-121
提出了一种基于正则文法的文本乐谱格式。给出了该文本乐谱格式的详细规范和形式文法,并给出了一个对该文本乐谱格式的读取算法。  相似文献   

7.
8.
目前实体识别和关系抽取任务大多采用流水线方式,但该方法存在错误累积、忽略两个任务相关性和信息冗余等诸多问题。结合中医文本的特点,提出一种基于深度学习的中医实体关系联合抽取方法。该方法使用改进的序列标注策略,将中医的实体关系联合抽取转换成序列标注任务,词向量与字符向量并联拼接作为双向LSTM-CRF输入,利用双向LSTM神经网络强大的特征提取能力,以及CRF在序列标注上的突出优势,结合优化的抽取规则完成中医实体关系联合抽取。在中医语料库上的实验结果表明,实体关系联合抽取的F1值可以达到80.42%,与传统流水线方法以及其他方法相比,实验效果更佳。  相似文献   

9.
实体关系抽取是信息抽取的关键任务之一,是一种包含实体抽取和关系抽取的级联任务.传统的实体关系抽取方式是将实体与关系抽取任务分离的Pipeline方式,忽略了两个任务的内在联系,导致关系抽取的效果严重依赖实体抽取,容易引起误差的累积.为了规避这种问题,我们提出一种端到端的实体关系联合抽取模型,通过自注意力机制学习单词特征...  相似文献   

10.
关系抽取旨在从未经标注的自由文本中抽取实体间的关系.然而,现有的方法大都孤立地预测每一个关系而未考虑关系标签相互之间的丰富语义关联.该文提出了一种融合预训练语言模型和标签依赖知识的关系抽取模型.该模型通过预训练模型BERT编码得到句子和两个目标实体的语义信息,使用图卷积网络建模关系标签之间的依赖图,并结合上述信息指导最...  相似文献   

11.
现有藏语句法体系复杂,不利于藏文自然语言处理的应用.为此,提出基于判别式的藏语依存句法分析方法,采用感知机方法训练句法分析模型,CYK自底向上算法解码生成最大生成树.实验结果表明,在人工标注的测试集上,句法分析正确率达到81.2%,可实际应用到藏语依存树库的构建和其他自然语言处理中.  相似文献   

12.
文本聚类是信息检索的重要内容。为了避免使用计算过程复杂的聚类算法,并能从语言学角度对聚类特征和聚类结果进行分析和解释,该文提出了采用句法分布信息进行文本聚类的方法。在汉语依存树库中,得出10种具有显著差异的词类依存关系,以其中5种依存关系作为聚类特征,访谈会话类和新闻播报类文本的相似度分别为71.98%和83.13%。实验结果验证了该方法利用依存关系对文本聚类的可行性和有效性。  相似文献   

13.
周惠巍  杨洋  黄德根 《计算机工程》2007,33(24):212-214
依据中文语法的特点,提出了Nivre算法和一种远距离依存关系的确定性中文依存关系解析方法。在中文句子中,有些相互依存的词距离较远,使用传统的确定性解析方法进行解析比较困难。在不忽略远距离依存关系的情况下进行确定性依存关系解析,采用支持向量机识别中文依存关系。实验结果表明,依存关系解析精度达到78.30%,提高了5.32%。  相似文献   

14.
为增强文本匹配模型的文本语义捕捉能力并提高语义匹配准确度,提出一种基于词嵌入与依存关系的文本匹配模型。构建融合词语义和词间依存关系的语义表示,通过余弦均值卷积和K-Max池化操作获得描述两段文本各部分语义匹配程度的矩阵,并采用长短期记忆网络学习匹配程度矩阵与真实匹配程度之间的映射关系。实验结果表明,该模型的F1值为0.927 4,相比BM25及深度文本匹配模型准确度更高。  相似文献   

15.
基于依存关系的问句理解与问句分类   总被引:1,自引:0,他引:1  
问句理解是问答系统的首要过程,问句分类是问句理解的主要组成部分,它在问答系统中具有非常重要的作用,因为问句类型有助于在文档中定位和抽取答案。问句分类的目标是基于预期的答案类型,准确地分类问句。本文提出依存关系规则与统计方法相结合,实现了基于依存关系的中文问句理解与问句分类机制。实验表明:支持向量机结合依存关系的特征抽取方法,获得了较高问句分类正确率。  相似文献   

16.
胡顺仁  欧阳 《计算机科学》2004,31(3):190-191
类之间的依赖关系,对于面向对象系统分析、设计和测试都有重要的意义。本文首先对类之间的依赖关系进行了定义和说明,并细分其为数据依赖和方法依赖,在此基础上,对类之间的依赖关系进行了度量,提出依赖度和被依赖度两种度量方法,并以此确定类地规模大小。  相似文献   

17.
基于网页文本依存特征的人名消歧   总被引:1,自引:0,他引:1  
研究互联网中的人名消歧问题.抽取与网页文本中人名关键字实体相关的依存特征及命名实体等辅助特征,利用二层聚类算法,根据依存特征将可信度高的文档聚类,使用辅助特征将剩余文档加到现有聚类结果中,由此实现人名消歧.实验结果证明,该方法消歧效果优于其他人名消歧方法.  相似文献   

18.
文本蕴含识别是处理自然语言中广泛存在的同义异形现象的一种有效途径。该文基于FrameNet中框架及框架之间的八种关系,结合WordNet中词汇间的语义关系,提出了一种文本蕴含识别方法。在给定文本T和假设H中词元激起的框架基础上,该方法利用深度优先搜索,在FrameNet框架关系图中,查询T和H中框架之间的上下位关系;再使用WordNet中语义关系比较二者的框架元素是否一致或相似。实验对RTE2007中50个文本对进行了测试,达到了76.6%的准确率,略高于RTE2007评测的最优结果。  相似文献   

19.
针对基于词频统计的T D‐ID F文本特征提取方法缺乏对文本中概念关系处理,而使提取到的文本特征具有概念冗余、特征不明确等问题,提出基于本体概念相似度的词频统计方法。利用文本元素之间的语义相似度调整特征元素的词频,突出特征元素的语义贡献、消除特征冗余,增强特征集合元素的特征独立性。最后结合文本概念的共现特性,对可能出现某些重要特征元素因词频统计而被忽略的问题进行处理,从而准确、高效地提取文本特征。  相似文献   

20.
本文对主题数据库之间的依赖关系进行了定义和说明,并细分其为实体依赖和操作依赖.在此基础上,对主题数据库之间的依赖关系进行了度量,提出了主题数据库之间的相对依赖度和相对被依赖度,并以此确定主题数据库的规模大小.最后给出了分解主题数据库算法的描述.通过这个算法可以把大规模的主题数据库科学地分解成若干个子主题数据库,降低子主题数据库之间的依赖度,同时又保证了主题数据库内部的联系是紧密的,大大提高了检索数据库的效率,并且有利于对主题数据库的管理和维护.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号