首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When updating a knowledge base, several problems may arise. One of the most important problems is that of integrity constraints satisfaction. The classic approach to this problem has been to develop methods forchecking whether a given update violates an integrity constraint. An alternative approach consists of trying to repair integrity constraints violations by performing additional updates thatmaintain knowledge base consistency. Another major problem in knowledge base updating is that ofview updating, which determines how an update request should be translated into an update of the underlying base facts. We propose a new method for updating knowledge bases while maintaining their consistency. Our method can be used for both integrity constraints maintenance and view updating. It can also be combined with any integrity checking method for view updating and integrity checking. The kind of updates handled by our method are: updates of base facts, view updates, updates of deductive rules, and updates of integrity constraints. Our method is based on events and transition rules, which explicity define the insertions and deletions induced by a knowledge base update. Using these rules, an extension of the SLDNF procedure allows us to obtain all possible minimal ways of updating a knowledge base without violating any integrity constraint.  相似文献   

2.
We reconsider the idea of structural symmetry breaking for constraint satisfaction problems (CSPs). We show that the dynamic dominance checks used in symmetry breaking by dominance-detection search for CSPs with piecewise variable and value symmetries have a static counterpart: there exists a set of constraints that can be posted at the root node and that breaks all the compositions of these (unconditional) symmetries. The amount of these symmetry-breaking constraints is linear in the size of the problem, and yet they are able to remove a super-exponential number of symmetries on both values and variables. Moreover, we compare the search trees under static and dynamic structural symmetry breaking when using fixed variable and value orderings. These results are then generalised to wreath-symmetric CSPs with both variable and value symmetries. We show that there also exists a polynomial-time dominance-detection algorithm for this class of CSPs, as well as a linear-sized set of constraints that breaks these symmetries statically.  相似文献   

3.
Many real problems can be naturally modelled as constraint satisfaction problems (CSPs). However, some of these problems are of a distributed nature, which requires problems of this kind to be modelled as distributed constraint satisfaction problems (DCSPs). In this work, we present a distributed model for solving CSPs. Our technique carries out a partition over the constraint network using a graph partitioning software; after partitioning, each sub-CSP is arranged into a DFS-tree CSP structure that is used as a hierarchy of communication by our distributed algorithm. We show that our distributed algorithm outperforms well-known centralized algorithms solving partitionable CSPs.  相似文献   

4.
Quantified constraint satisfaction problems (QCSPs) are an extension to constraint satisfaction problems (CSPs) with both universal quantifiers and existential quantifiers.In this paper we apply variab...  相似文献   

5.
Algorithms for Distributed Constraint Satisfaction: A Review   总被引:12,自引:0,他引:12  
When multiple agents are in a shared environment, there usually exist constraints among the possible actions of these agents. A distributed constraint satisfaction problem (distributed CSP) is a problem to find a consistent combination of actions that satisfies these inter-agent constraints. Various application problems in multi-agent systems can be formalized as distributed CSPs. This paper gives an overview of the existing research on distributed CSPs. First, we briefly describe the problem formalization and algorithms of normal, centralized CSPs. Then, we show the problem formalization and several MAS application problems of distributed CSPs. Furthermore, we describe a series of algorithms for solving distributed CSPs, i.e., the asynchronous backtracking, the asynchronous weak-commitment search, the distributed breakout, and distributed consistency algorithms. Finally, we show two extensions of the basic problem formalization of distributed CSPs, i.e., handling multiple local variables, and dealing with over-constrained problems.  相似文献   

6.
If we have two representations of a problem as constraint satisfaction problem (CSP) models, it has been shown that combining the models using channeling constraints can increase constraint propagation in tree search CSP solvers. Handcrafting two CSP models for a problem, however, is often time-consuming. In this paper, we propose model induction, a process which generates a second CSP model from an existing model using channeling constraints, and study its theoretical properties. The generated induced model is in a different viewpoint, i.e., set of variables. It is mutually redundant to and can be combined with the input model, so that the combined model contains more redundant information, which is useful to increase constraint propagation. We also propose two methods of combining CSP models, namely model intersection and model channeling. The two methods allow combining two mutually redundant models in the same and different viewpoints respectively. We exploit the applications of model induction, intersection, and channeling and identify three new classes of combined models, which contain different amounts of redundant information. We construct combined models of permutation CSPs and show in extensive benchmark results that the combined models are more robust and efficient to solve than the single models.  相似文献   

7.
Semiring-Based CSPs and Valued CSPs: Frameworks, Properties, and Comparison   总被引:3,自引:0,他引:3  
In this paper we describe and compare two frameworks for constraint solving where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. One is based on a semiring, and the other one on a totally ordered commutative monoid. While comparing the two approaches, we show how to pass from one to the other one, and we discuss when this is possible. The two frameworks have been independently introduced in ijcai95,jacm and schiex-ijcai95.  相似文献   

8.
k-consistency operations in constraint satisfaction problems (CSPs) render constraints more explicit by solving size-k subproblems and projecting the information thus obtained down to low-order constraints. We generalise this notion of k-consistency to valued constraint satisfaction problems (VCSPs) and show that it can be established in polynomial time when penalties lie in a discrete valuation structure.A generic definition of consistency is given which can be tailored to particular applications. As an example, a version of high-order consistency (face consistency) is presented which can be established in low-order polynomial time given certain restrictions on the valuation structure and the form of the constraint graph.  相似文献   

9.
We propose an artificial immune algorithm to solve constraint satisfaction problems (CSPs). Recently, bio-inspired algorithms have been proposed to solve CSPs. They have shown to be efficient in solving hard problem instances. Given that recent publications indicate that immune-inspired algorithms offer advantages to solve complex problems, our main goal is to propose an efficient immune algorithm which can solve CSPs. We have calibrated our algorithm using relevance estimation and value calibration (REVAC), which is a new technique recently introduced to find the parameter values for evolutionary algorithms. The tests were carried out using randomly generated binary constraint satisfaction problems and instances of the three-colouring problem with different constraint networks. The results suggest that the technique may be successfully applied to solve CSPs.  相似文献   

10.
We review the many different definitions of symmetry for constraint satisfaction problems (CSPs) that have appeared in the literature, and show that a symmetry can be defined in two fundamentally different ways: as an operation preserving the solutions of a CSP instance, or else as an operation preserving the constraints. We refer to these as solution symmetries and constraint symmetries. We define a constraint symmetry more precisely as an automorphism of a hypergraph associated with a CSP instance, the microstructure complement. We show that the solution symmetries of a CSP instance can also be obtained as the automorphisms of a related hypergraph, the k-ary nogood hypergraph and give examples to show that some instances have many more solution symmetries than constraint symmetries. Finally, we discuss the practical implications of these different notions of symmetry.  相似文献   

11.
We develop a formalism called a distributed constraint satisfaction problem (distributed CSP) and algorithms for solving distributed CSPs. A distributed CSP is a constraint satisfaction problem in which variables and constraints are distributed among multiple agents. Various application problems in distributed artificial intelligence can be formalized as distributed CSPs. We present our newly developed technique called asynchronous backtracking that allows agents to act asynchronously and concurrently without any global control, while guaranteeing the completeness of the algorithm. Furthermore, we describe how the asynchronous backtracking algorithm can be modified into a more efficient algorithm called an asynchronous weak-commitment search, which can revise a bad decision without exhaustive search by changing the priority order of agents dynamically. The experimental results on various example problems show that the asynchronous weak-commitment search algorithm is, by far more, efficient than the asynchronous backtracking algorithm and can solve fairly large-scale problems  相似文献   

12.
The paper focuses on evaluating constraint satisfaction search algorithms on application based random problem instances. The application we use is a well-studied problem in the electric power industry: optimally scheduling preventive maintenance of power generating units within a power plant. We show how these scheduling problems can be cast as constraint satisfaction problems and used to define the structure of randomly generated non-binary CSPs. The random problem instances are then used to evaluate several previously studied algorithms. The paper also demonstrates how constraint satisfaction can be used for optimization tasks. To find an optimal maintenance schedule, a series of CSPs are solved with successively tighter cost-bound constraints. We introduce and experiment with an “iterative learning” algorithm which records additional constraints uncovered during search. The constraints recorded during the solution of one instance with a certain cost-bound are used again on subsequent instances having tighter cost-bounds. Our results show that on a class of randomly generated maintenance scheduling problems, iterative learning reduces the time required to find a good schedule. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
This paper investigates the view update problem for XML views published from relational data.We consider XML views defined in terms of mappings directed by possibly reeursive DTDs compressed into DAGs and stored in relations. We provide new techniques to efficiently support XML view updates specified in terms of XPath expressions with recursion and complex filters.The interaction between XPath recursion and DAG compression of XML views makes the analysis of the XML view update problem rather intriguing.Furthermore,many issues are still open even for relational view updates, and need to be explored.In response to these,on the XML side,we revise the notion of side effects and update semantics based on the semantics of XML views,and present efficient algorithms to translate XML updates to relational view updates. On the relational side,we propose a mild condition on SPJ views,and show that under this condition the analysis of deletions on relational views becomes PTIME while the insertion analysis is NP-complete.We develop an efficient algorithm to process relational view deletions,and a heuristic algorithm to handle view insertions.Finally,we present an experimental study to verify the effectiveness of our techniques.  相似文献   

14.
《国际计算机数学杂志》2012,89(12):1465-1476
A finite binary Constraint Satisfaction Problem (CSPs) is defined as consisting of a set of n problem variables, a domain of d potential values for each variable and a set of m binary constraints involving only two variables at a time. A solution to such a CSP is specified by assignment of a value to each variable that does not violate any of the constraints. The CSPs belong to the class of NP-Complete Problems. Backtracking and its variants have been generally used for solving CSPs. The class of Partial Constraint Satisfaction Problems (PCSPs) is a subclass of CSPs that are either too difficult to solve or are unsolvable. Near optimal solutions are always desired to these problems.

In this article, we have considered only finite binary CSPs or PCSPs and developed a method of time complexity O(n 2 d 2) to obtain a near optimal solution for them. The performance of the method in terms of the average number of consistency checks and the average number of constraint violations is measured on various randomly generated binary CSPs and compared with the Branch and Bound (BB) method used to obtain the same solution. The BB method is a widely used optimization technique that may be viewed as a variation of backtracking. Thus, it was a natural choice in seeking an analog of backtracking to find optimal partial solutions for PCSPs. The proposed method moves much faster to the solution. The performance results indicate that in terms of the number of consistency checks, the proposed method has much less consistency checks than BB whereas in terms of average number of constraint violations both methods are same. An upper bound on the distance of the solution from the optimal solution is obtained analytically as ?n(n???2)(d???2)/(d???1)?.  相似文献   

15.
Minimal Unsatisfiable Subsets (MUSes) are the subsets of constraints of an overconstrained constraint satisfaction problem (CSP) that cannot be satisfied simultaneously and therefore are responsible for the conflict in the CSP. In this paper, we present a hybrid algorithm for finding MUSes in overconstrained CSPs. The hybrid algorithm combines the direct and the indirect approaches to finding MUSes in overconstrained CSPs. Experimentation with random CSPs reveals that the hybrid approach is not only quite efficient but when operating under a time bound it finds a more representative set of MUSes. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
规划问题编码为约束可满足问题的研究   总被引:4,自引:1,他引:3  
基于约束可满足问题的规划求解是研究智能规划的重要技术方法。把规划问题编码为约束可满足(CSP)问题,是这种规划求解方法的关键技术之一。本文介绍把规划问题编码为约束可满足问题的方法,及一些已有的并且已经用于规划的可满足过程,并对这些编码方法做进一步的研究,主要讨论领域知识在编码方法中的应用,提出在编码求解中加入领域知识的观点。  相似文献   

17.
In this paper we explore the links between constraint satisfaction problems and universal algebra. We show that a constraint satisfaction problem instance can be viewed as a pair of relational structures, and the solutions to the problem are then the structure preserving mappings between these two relational structures. We give a number of examples to illustrate how this framework can be used to express a wide variety of combinatorial problems, many of which are not generally considered as constraint satisfaction problems. We also show that certain key aspects of the mathematical structure of constraint satisfaction problems can be precisely described in terms of the notion of a Galois connection, which is a standard notion of universal algebra. Using this result, we obtain an algebraic characterisation of the property of minimality in a constraint satisfaction problem. We also obtain a similar algebraic criterion for determining whether or not a given set of solutions can be expressed by a constraint satisfaction problem with a given structure, or a given set of allowed constraint types. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
XML publishing has been an emerging technique for transforming (portions of) a relational database into an XML document, for example, to facilitate interoperability between heterogeneous applications. Such applications may update the XML document and the source relational database must be updated accordingly. In this paper, we consider such XML documents as (possibly) recursively defined XML views of relations. We propose new optimization techniques to efficiently support XML view updates specified via an XPATH expression with recursion and complex filters. The main novelties of our techniques are: (1) we propose a space-efficient relational encoding of recursive XML views; and (2) we push the bulk of update processing inside a relational database. Specifically, a compressed representation of the XML views is stored as extended shared-inlining relations. A space-efficient and updatable 2-hop index is used to optimize XPATH evaluation on XML views. Updates of the XML views are evaluated on these relations and index. View update translation is handled by a heuristic procedure inside a relational database, as opposed to previous middleware approaches. We present an experimental study to demonstrate the effectiveness of our proposed techniques.  相似文献   

19.
With the increasingly growing amount of service requests from the world‐wide customers, the cloud systems are capable of providing services while meeting the customers' satisfaction. Recently, to achieve the better reliability and performance, the cloud systems have been largely depending on the geographically distributed data centers. Nevertheless, the dollar cost of service placement by service providers (SP) differ from the multiple regions. Accordingly, it is crucial to design a request dispatching and resource allocation algorithm to maximize net profit. The existing algorithms are either built upon energy‐efficient schemes alone, or multi‐type requests and customer satisfaction oblivious. They cannot be applied to multi‐type requests and customer satisfaction‐aware algorithm design with the objective of maximizing net profit. This paper proposes an ant‐colony optimization‐based algorithm for maximizing SP's net profit (AMP) on geographically distributed data centers with the consideration of customer satisfaction. First, using model of customer satisfaction, we formulate the utility (or net profit) maximization issue as an optimization problem under the constraints of customer satisfaction and data centers. Second, we analyze the complexity of the optimal requests dispatchment problem and rigidly prove that it is an NP‐complete problem. Third, to evaluate the proposed algorithm, we have conducted the comprehensive simulation and compared with the other state‐of‐the‐art algorithms. Also, we extend our work to consider the data center's power usage effectiveness. It has been shown that AMP maximizes SP net profit by dispatching service requests to the proper data centers and generating the appropriate amount of virtual machines to meet customer satisfaction. Moreover, we also demonstrate the effectiveness of our approach when it accommodates the impacts of dynamically arrived heavy workload, various evaporation rate and consideration of power usage effectiveness. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Constraint satisfaction for planning and scheduling problems   总被引:1,自引:0,他引:1  
The areas of planning and scheduling (from the Artificial Intelligence point of view) have seen important advances thanks to application of constraint satisfaction techniques. Currently, many important real-world problems require efficient constraint handling for planning, scheduling and resource allocation to competing goal activities over time in the presence of complex state-dependent constraints. Solutions to these problems require integration of resource allocation and plan synthesis capabilities. Hence to manage such complex problems planning, scheduling and constraint satisfaction must be interrelated. This special issue on Constraint Satisfaction for Planning and Scheduling Problems compiles a selection of papers dealing with various aspects of applying constraint satisfaction techniques in planning and scheduling. The core of submitted papers was formed by the extended versions of papers presented at COPLAS??2009: ICAPS 2009 Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems. This issue presents novel advances on planning, scheduling, constraint programming/constraint satisfaction problems (CSPs) and many other common areas that exist among them. On the whole, this issue mainly focus on managing complex problems where planning, scheduling, constraint satisfaction and search must be combined and/or interrelated, which entails an enormous potential for practical applications and future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号