共查询到18条相似文献,搜索用时 62 毫秒
1.
基于SIFT特征的遥感图像配准方法研究与实现 总被引:1,自引:0,他引:1
讨论了基于SIFT特征的遥感图像配准方法,重点介绍了基于特征点提取的算法描述以及针对基于特征点的遥感图像配准算法流程,并通过实验进行了验证. 相似文献
2.
针对SIFT匹配算法和SIFT与RANSAC结合的匹配算法都存在不同程度误匹配的问题,提出一种基于局部SIFT特征点的双阈值匹配算法。设计变步长迭代准则获取SIFT双阈值,其中大阈值匹配获得一组稀疏的精确匹配,小阈值匹配获得一组可能存在误匹配的密集匹配。以精确匹配建立目标的形变约束模型,以此为基础从密集匹配中删除误匹配。通过这些正确的匹配点估计两幅图像之间的变换矩阵。为了降低算法所需时间,提高效率,通过分析图像的纹理变化,采用提取其变化最为剧烈的区域来代表整幅图像进行匹配运算。实验结果表明,该算法在图像存在平移、旋转等仿射变化情况下具有配准精度高,稳定和快速等特点。 相似文献
3.
为了提高无人机航拍图像配准的实时性,通过分析无人机巡航高度相对稳定及图像缺乏高频的细节信息的特点,提出了一种改进SIFT特征点检测方法,显著提高了图像的配准速度,并构建了一个用于图像拼接的航空影像数据集进行实验验证.首先分析了SIFT(Scale Invariant Feature Transform)算法关于特征点尺度不变性的理论依据及实现方法,提出了消除冗余性能的策略;然后采用减少高斯金字塔阶数与层数以及选择在每阶的第三层图像开始检测极值点,以减小差分尺度空间规模的方法;最后在数据集上进行了与现有图像配准方法的对比实验.实验结果证明,所提方法能够获得匹配稳健、鲁棒性高的特征点,匹配耗时只有经典SIFT的1/10,该方法为无人机航拍图像快速拼接提供了技术支持. 相似文献
4.
为了提高无人机航拍图像配准的实时性,通过分析无人机巡航高度相对稳定及图像缺乏高频的细节信息的特点,提出了一种改进SIFT特征点检测方法,显著提高了图像的配准速度,并构建了一个用于图像拼接的航空影像数据集进行实验验证.首先分析了SIFT(Scale Invariant Feature Transform)算法关于特征点尺度不变性的理论依据及实现方法,提出了消除冗余性能的策略;然后采用减少高斯金字塔阶数与层数以及选择在每阶的第三层图像开始检测极值点,以减小差分尺度空间规模的方法;最后在数据集上进行了与现有图像配准方法的对比实验.实验结果证明,所提方法能够获得匹配稳健、鲁棒性高的特征点,匹配耗时只有经典SIFT的1/10,该方法为无人机航拍图像快速拼接提供了技术支持. 相似文献
5.
由于SIFT算法在寻找关键点时,只考虑了图像的局部特征,使得在具有复杂纹理背景的图像处理中,无法提取出具有代表性的特征点。针对这一问题,提出在提取关键点的时候,考虑特征点间的相关性,参照SSIFT算法缩小特征描述的维数,利用统计的方式缩短算法执行时间,使得算法能快速提取到具有代表性的关键点,滤掉纹理图案中的关键点。通过实验证明了算法的执行效率以及算法的普适性。 相似文献
6.
首先分析了不同类型的图像特征对不同重复图像类型检测性能的影响,SIFT局部描述子不仅具有良好的尺度和亮度不变性,同时对仿射形变、视角改变和噪声等也有一定的鲁棒性,因此选择了SIFT描述子来描述图像特征。同时针对SIFT特征在检测过程中匹配计算代价大的缺点,提出了基于奇异值分解的SIFT特征点集合匹配方法,实验结果表明该方法在检测效果和检测时间方面取得了一个很好的平衡。 相似文献
7.
基于区域生长的多源遥感图像配准 总被引:2,自引:0,他引:2
多源遥感图像由于成像设备、所用光谱、拍摄时间等因素的不同,给配准带来极大的困难.尽管已经提出了多种匹配方法,但已有方法一般只能适用于特定的应用环境,开发出更加稳定和适用的配准算法仍然是一个极具挑战性的研究课题.提出一种基于区域生长的配准方法,首先,提取改进后的尺度不变特征,通过全局匹配确定种子点和种子区域并完成变换模型的初始化;然后,运用迭代区域生长和双向匹配策略,得到整个图像的可靠匹配点,从而实现多源遥感图像之间的配准.实验表明,该方法提取的匹配点的数量和正确率均远高于已有方法,能够对存在严重灰度差异的多源遥感图像实现高精度的配准,充分证明了该方法的鲁棒性和适用性. 相似文献
8.
9.
10.
为了准确配准印鉴图像,为高仿真印鉴的真伪识别做好准备,提出利用印鉴边缘图像SIFT(Scale Invariant Feature Transform)特征的相似性和空间关系相结合的配准方法。采用邻域搜索法提取待测印鉴与预留印鉴的二值边缘图像,在印鉴边缘图像中提取SIFT特征,并根据相似性匹配。利用印鉴边缘图像SIFT特征匹配点对的空间关系剔除错误匹配,提高配准效率。利用RANSAC方法估计两印鉴的变换模型。分别配准具有不同形状及印文内容的10组真印鉴图像和10组假印鉴图像。将所得结果与其他两种典型的配准方法作比较。以两印鉴配准后不重合边缘点之间的平均距离评价配准的准确性,以最大距离量化配准后出现的最大差异。实验结果表明,该方法可以准确配准待测印鉴与预留印鉴图像,对印鉴形状、笔画结构无任何限制,配准速度比直接利用印鉴二值图像SIFT特征的配准方法提高一倍。 相似文献
11.
基于局部显著特征的快速图像配准方法 总被引:1,自引:0,他引:1
针对SIFT算法在进行图像配准时存在提取特征点数目大、无法精确控制、运算速度慢、配准点精度不高的问题,提出一种基于局部显著特征的快速图像配准方法。该方法首先对原始图像和待配准图像进行降采样,对降采样图像分别提取SIFT特征点,并对特征点运用改进的K-means聚类算法进行聚类;然后利用聚类结果筛选聚类区域,在各聚类区域提取显著特征点进行粗匹配;最后利用显著特征点在原始图像中定位显著区域,对所得显著区域进行精配准。实验结果表明,该方法减少了图像匹配时间,控制了特征点数量,在保证匹配准确度的同时,有效地提高了特征匹配的效率。 相似文献
12.
针对尺度不变特征变换(SIFT)算法中描述子维度高造成配准过程中计算量过大的问题,提出了一种改进的SIFT算法。该算法利用圆形的旋转不变性,以特征点为中心,在近似大小的圆形特征点邻域内构造特征描述子,以每个圆环作为一个子环,每个子环内只有像素位置发生了改变,像素之间其他相对信息是保持不变的。当图像发生旋转时,统计每个圆环内元素的梯度累加值进行排序,生成特征向量描述子,降低了算法的维度及复杂度,把特征描述子的维数从128维降低到48维。实验结果表明,改进算法旋转配准重复率在85%以上;在图像旋转、缩放和光照变化情况下,与SIFT算法相比,平均配准准确率提高5%,平均配准耗时降低30%左右,有效实现了对SIFT的改进。 相似文献
13.
一种改进的SIFT图像特征匹配算法 总被引:2,自引:0,他引:2
针对传统SIFT图像特征匹配算法因其特征描述算子维度过高而造成的计算量大、实时性差的问题,提出一种基于内核投影的改进SIFT图像特征匹配算法。传统SIFT特征匹配算法采用平滑加权直方图计算特征点的梯度模值和梯度方向。采用内核投影算法对其进行改进,使生成的特征描述算子的维度降低,从而能够提高特征匹配效率。实验结果表明,改进后的SIFT算法具有较高的匹配精度,同时匹配时间有所减少,使实时性得到提高。 相似文献
14.
针对多源遥感影像的配准,提出了一种结合SIFT算法和归一化互相关(NCC)匹配算法的配准方法。该方法采用SIFT算法提取特征点并进行匹配得到一定数量的特征点对后,利用SIFT特征点的尺度和方向信息对NCC进行改进,进一步从未能匹配的特征点中获取匹配点对,经粗差滤除后得到有效的匹配特征点对,随之进行影像配准。方法结合了SIFT算法和NCC算法的优点,解决了多源遥感影像因辐射差异和几何差异造成的难以正确配准的问题。实验结果表明,算法具有较强的鲁棒性,并取得了较好的配准精度。 相似文献
15.
针对尺度不变的特征变换(SIFT)算法提取的特征点数目多、匹配耗时长、匹配精度不高等问题,提出了一种基于局部显著边缘特征的快速图像配准算法。该算法利用SIFT算法提取待选特征点,同时用小波边缘检测提取图像边缘,建立特征点周围邻域的边缘特征,筛选出具有显著边缘特征的特征点,结合Shape-context算子和边缘特征形成特征描述向量,采用欧氏距离作为匹配度量函数对筛选出的特征点进行初步匹配,然后用随机一致性检验(RANSAC)算法消除误匹配点对。实验结果表明,该算法有效控制了特征点的数量,提高了特征点的质量,缩小了特征搜索空间,提高了特征匹配的效率。 相似文献
16.
提出了一种基于特征点匹配的柱面全景图像拼接算法。首先将360°环绕拍摄的序列图像投影到柱面坐标系下;然后提取各图像的SIFT(Scale Invariant Feature Transform,尺度不变特征变换)特征点,通过特征点匹配完成两幅图像的配准;再根据配准结果计算出图像间的变换参数;最后采用加权平均的融合方法对两幅图像进行无缝拼接。实验表明,算法可以有效、快速地自动生成柱面全景图像。 相似文献
17.
SIFT算法广泛用于三维目标识别,但其由于依赖过多的特征点,计算量大,在实际火灾图像定位中很难保证算法的实时性。在保留了SIFT算法良好的旋转、尺度、光照等不变特性的基础上,采用关键点的4×4窗口(16维向量)表示关键点的特征描述。同时,利用双向匹配在特征点的匹配上保证了准确率。实验数据表明,该算法在很大程度上提高了图像的匹配速度,准确率满足火灾空间定位的需要。 相似文献
18.
提出了一种基于SIFT和Krawtchouk矩不变量的图像配准方法。通过SIFT关键点检测方法检测关键点;对每个关键点计算其邻域的Krawtchouk矩不变量,并将其构成描述关键点的特征向量;计算关键点特征向量之间的欧氏距离找出相匹配的关键点对。实验结果表明,该算法的配准性能与标准SIFT算法相当,而运算速度比标准SIFT算法有较大程度提高。 相似文献