首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
基于压缩感知信号重建的自适应正交多匹配追踪算法*   总被引:1,自引:2,他引:1  
近年来出现的压缩感知理论为信号处理的发展开辟了一条新的道路,不同于传统的奈奎斯特采样定理,它指出只要信号具有稀疏性或可压缩性,就可以通过少量随机采样点来恢复原始信号。在研究和总结传统匹配算法的基础上,提出了一种新的自适应正交多匹配追踪算法(adaptive orthogonal multi matching pursuit,AOMMP)用于稀疏信号的重建。该算法在选择原子匹配迭代时分两个阶段,引入自适应和多匹配的原则,加快了原子的匹配速度,提高了匹配的准确性,实现了原始信号的精确重建。最后与传统OMP算法  相似文献   

2.
《软件工程师》2019,(7):6-8
在基于压缩感知的信号重构问题中,有一类常见情况——未知信号稀疏度。针对此类情况,提出稀疏度自适应分段正交匹配追踪(SparsityAdaptiveStagewiseOrthogonalMatchingPursuit,SAStOMP)算法,该算法将自适应思想、变步长迭代思想与分段正交思想相结合,在未知信号稀疏度的情况下,自适应地选择支撑集原子的个数,最终实现信号的精确重构。仿真结果表明,针对长度为256位的原始信号,该算法重建效果优于正交匹配追踪算法、正则化正交匹配追踪算法和分段正交匹配追踪算法等。  相似文献   

3.
压缩感知理论是一种利用信号的稀疏性或可压缩性而把采样与压缩融为一体的新理论体系,它成功地克服了传统理论中采样数据量大、资源浪费严重等问题。该理论的研究方向主要包括信号的稀疏表示、测量矩阵的设计和信号的重构算法。其中信号的重构算法是该理论中的关键部分,也是近年来研究的热点。本文主要对匹配追踪类重构算法作了详细介绍,并通过仿真实验结果对这些算法进行了对比和分析。  相似文献   

4.
针对压缩采样匹配追踪( CoSaMP)算法重构精度相对较差的问题,为了提高算法的重构性能,提出了一种基于伪逆处理改进的压缩采样匹配追踪( MCoSaMP)算法。首先,在迭代前,对观测矩阵进行伪逆处理,以此来降低原子间的相干性,从而提高原子选择的准确性;然后,结合正交匹配追踪算法( OMP),将OMP算法迭代K次后的原子和残差作为CoSaMP算法的输入;最后,每次迭代后,通过判断残差是否小于预设阈值来决定算法是否终止。实验结果表明,无论是对一维高斯随机信号还是二维图像信号,MCoSaMP算法的重构效果优于CoSaMP算法,能够在观测值相对较少的情况下,实现信号的精确重构。  相似文献   

5.
压缩感知(CS)是一种新的信号采样、处理和恢复理论,能够显著地降低高频窄带信号的采样频率。针对稀疏度未知信号的重建,提出了步长自适应前向后向追踪(AFBP)算法。不同于固定步长前向后向追踪(FBP)算法,AFBP的步长可变。它利用一种自适应阈值的方法选取前向步长,然后对候选支撑集进行正则化处理以保证其可靠性,接着用自适应阈值与变步长双向控制的方法选取后向步长以减少重建时间。AFBP能够自适应后向删除估计支撑集中部分错误索引以提高信号准确重建概率。在稀疏信号非零值服从常见分布条件下,用AFBP、FBP等算法进行重建的结果表明,AFBP的准确重建概率、重建精度与FBP相当,重建时间明显少于FBP,能够更高效地重建稀疏度未知信号。  相似文献   

6.
该文简单对信号稀疏重建的模型和测量矩阵的设计进行了介绍,主要介绍了几种稀疏重建算法,详细给出压缩采样匹配追踪算法及其改进算法的数学框架和基本思想,从原子选择策略和冗余向量的更新方式对算法进行了比较分析,最后通过模拟实验验证了MP,OMP,CoSaMP和IHTCoSaMP算法的重构效果,同时以MSE为性能指标评价了各种算法的重构质量,实验结果表明改进的压缩抽样匹配追踪算法的运算速度较快,重构质量较高。  相似文献   

7.
基于谱投影梯度追踪的压缩感知重建算法   总被引:1,自引:0,他引:1  
为了改进方向追踪法的重建精度和算法效率, 提出了一种基于谱投影梯度(Spectral projected gradient, SPG)追踪的压缩感知(Compressed sensing, CS) 重建算法. 该算法采用方向追踪法框架, 运用谱投影梯度方法计算更新方向和步长, 引进非单调线性搜索策略使算法避免收敛至局部最优解. 实验结果证明了该算法的有效性, 通过设定合适的阈值参数可以取得重建精度和算法效率之间的平衡.  相似文献   

8.
吕伟杰  孟博  张飞 《控制与决策》2018,33(9):1657-1661
针对稀疏度自适应匹配追踪(Sparsity adaptive matching pursuit,SAMP)算法存在预选原子过多、重构时间长、步长的选择固定等缺点,提出一种稀疏度自适应匹配追踪改进算法.该算法将稀疏度预先设定值与稀疏度估计过量判据相结合进行真实稀疏度快速估计,通过模糊阈值的方法提高候选原子的精确度,采用原子相关阈值改善迭代停止条件,最终实现信号的精确重构.仿真实验表明,改进算法重构质量较好于SAMP算法,重构速率显著提高.  相似文献   

9.
针对稀疏自适应匹配追踪(SAMP)算法中存在的运行速度慢、重建效果欠佳的问题,提出了一种新的自适应的子空间追踪算法(MASP)。采用SAMP算法中分段的思想,先对半减小预估稀疏度,再逐一增加,得到真实稀疏度后,再利用子空间追踪算法对原始信号进行重构。实验表明,相比于SAMP算法,该算法在相同观测数量的情况下,具有较快的运行时间和较好的重建效果,其中,在重构信噪比方面平均提高8.2%。  相似文献   

10.
基于压缩感知理论的重建关键在于从压缩感知得到的低维数据中精确恢复出原始的高维稀疏数据。针对目前大多数算法都建立在稀疏度已知的基础上,提出一种后退型固定步长自适应匹配追踪重建算法,能够在稀疏度未知的条件下获得图像的精确重建。该算法通过较大固定步长的设置,保证待估信号支撑集大小的稳步快速增加;以相邻阶段重建信号的能量差为迭代停止条件,在迭代停止后通过简单的正则化方法向后剔除多余原子保证精确重建。实验结果表明,该算法在保证测量次数的条件下可以获得快速的精确重建。  相似文献   

11.
在信号稀疏度未知的情况下,稀疏度自适应匹配追踪算法(Sparsity Adaptive Matching Pursuit,SAMP)是一种广泛应用的压缩感知重构算法。为了优化SAMP算法的性能,提出了一种改进的稀疏度自适应匹配追踪(Improved Sparsity Adaptive Matching Pursuit,ISAMP)算法。该算法引入广义Dice系数匹配准则,能更准确地从测量矩阵中挑选与残差信号最匹配的原子,利用阈值方法选取预选集,并在迭代过程中采用指数变步长。实验结果表明,在相同的条件下,改进后的算法提高了重构质量和运算速度。  相似文献   

12.
刘馨月  赵志刚  吕慧显  王福驰  解昊 《计算机科学》2017,44(Z6):212-215, 228
压缩感知理论(CS)中的重构算法是压缩感知理论的重要组成部分。在稀疏度未知的情况下,一些重构算法表现不佳。针对该问题,提出一种基于双阈值的正交匹配追踪算法。通过对所选原子的两次筛选,能够在稀疏度未知的情况下,高效率、高质量地重构信号。与同类算法相比,所提算法能够很好地重构信号,重构精度较高,运行速度较快。  相似文献   

13.
压缩感知是一种新型的信号采样及重构理论,高效的信号重构算法是压缩感知由理论转向实际应用的枢纽。为了更精确地重构出原始稀疏信号,本文提出一种基于二次筛选的回溯广义正交匹配追踪算法。首先采用内积匹配准则选出较大数目的相关原子,提高原子的利用率。其次利用广义Jaccard系数准则对已选出的原子进行二次筛选,得到最匹配的原子,优化原子选取方式。实验结果表明,在不同稀疏度和观测值下进行信号重构,相比于回溯广义正交匹配追踪算法、正交匹配追踪算法及子空间追踪算法,本文算法在重构误差及重构成功率方面有较大的优越性。  相似文献   

14.
压缩采样匹配追踪(CoSaMP)算法的性能受初始支撑集选择的制约,初始支撑集选择不准确不仅影响重构精度,还会降低重构速度。针对该问题,将图像在稀疏域的结构特性引入到CoSaMP算法中,提出了支撑集相似度的概念;利用数字图像相邻行之间原子支撑集的相似性,提出了基于行间支撑集相似度的CoSaMP算法。实验结果表明,在同等采样率的条件下, 与传统的CoSaMP算法相比,所提算法在不增加算法时间复杂度的同时提高了重构质量 ,峰值信噪比提高了0.6~2.5dB。  相似文献   

15.
压缩感知理论的基本思想是原始信号在某一变换域是稀疏的或者是可压缩的,并将奈奎斯特采样定理中的采样过程和压缩过程合二为一。稀疏度自适应匹配追踪(SAMP)算法能够实现稀疏度未知情况下的重构,而广义正交匹配追踪算法每次迭代时选择多个原子,提高了算法的收敛速度。基于上述两种重构算法的优势,提出了广义稀疏度自适应匹配追踪(Generalized Sparse Adaptive Matching Pursuit,gSAMP)算法。针对重构图像的峰值信噪比、重构时间、相对误差等客观评价指标,以及主观视觉上对所提算法与传统的贪婪算法进行对比。在压缩比固定为0.5时,gSAMP算法的重构效果优于传统的MP、OMP、ROMP、SAMP以及gOMP贪婪类重构算法的效果。  相似文献   

16.
正交匹配追踪算法(OMP)是一种利用一个超完备的字典进行信号分解的非线性自适应算法.文献[2]提出了基于树型搜索的正交匹配追踪算法(TB-OMP),尽管TB-OMP算法能够改进向量的逼近性能,但使计算的复杂度成指数倍的增加,严重限制了该算法在许多领域里的应用.在本文中将介绍一种灵活的基于树型搜索的正交匹配追踪算法(FTB-OMP)[5],算法通过设置参数,能够在算法逼近性能和计算复杂度之间找到一个灵活的折衷方案.  相似文献   

17.
针对目前的稀疏去噪算法分解效率低、去噪效果不理想的问题,提出了一种基于自适应匹配追踪的图像去噪算法。该算法首先通过自适应匹配追踪算法求解稀疏系数,然后利用K奇异值分解算法将字典训练成能够有效反映图像结构特征的自适应字典,最后将稀疏系数与自适应字典相结合来重构图像。在重构过程中,将噪声对应的系数去除,最终达到去噪的效果。算法引入Spike-Slab先验来引导稀疏系数矩阵的稀疏性,并利用两个权重矩阵促使去噪模型更加真实。鉴于字典在稀疏算法中的重要性,将自适应字典与DCT冗余字典、Global字典进行比较。实验结果显示,选择自适应字典的去噪结果比传统字典在峰值信噪比上高出约4.5 dB;与目前6种主流的稀疏去噪方法相比,文中提出的方法在3种评价指标上均有不同程度的提高,其中峰值信噪比平均提高了约0.76~6.24 dB,特征相似度平均提高了约0.012~0.082,结构相似性平均提高了约0.015~0.108。对图像去噪算法进行定性的评价,结果显示所提算法保留了更多的有用信息,视觉效果最佳。实验充分证明了自适应匹配追踪图像去噪算法对图像去噪的有效性和鲁棒性。  相似文献   

18.
压缩感知中迂回式匹配追踪算法   总被引:1,自引:0,他引:1  
迂回式匹配追踪(detouring matching pursuit, DMP)是一种计算复杂度低、准确率高、对传感矩阵列相关性要求低的贪婪重构稀疏信号算法.DMP中子内积逆和系数矩阵递增递减核心式被提出并证明,DMP利用子内积逆和系数矩阵减少残差误差变化量的计算量,达到降低计算复杂度的目的.另外,DMP采用先逐个最优缩减、后逐个最优扩增假定支撑集元素的方法提高重构准确率和扩大重构稀疏信号的稀疏度范围.DMP算法复杂度分析表明,DMP算法中获取、缩减和扩增假定支撑集的复杂度分别为O(K2N),O(b(K-b)N)和O(b(K-b)N).加权间接重构0-1稀疏信号实验结果表明,对于稀疏度为M/2的0-1稀疏信号,DMP、逐步贪婪追踪(greedy pursuit algorithm, GPA)、子空间追踪(subspace pursuit, SP)、压缩采样追踪(compressive sampling matching pursuit, CoSaMP)、正交匹配追踪(orthogonal matching pursuit, OMP)的重构准确率分别为99%,65%,0%,0%和13%.非零值服从正态分布的稀疏信号实验结果也表明DMP的重构准确率优势显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号