首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-phase “ACSTRH–UASBMet” system has been investigated at the stepwise decreased HRT for the simultaneous production of hydrogen and methane in this study. Hydrogen could be continuously produced from the two-phase hydrogen fermentation of sugary wastewater in ACSTR and effluents from hydrogen fermentation were converted into methane in UASB reactor. At optimum conditions (HRTH: 5 h, HRTMet: 15 h), the highest hydrogen production rate of 5.69 (±0.06) mmol L−1 h−1 was obtained from sugary wastewater and methane was continuously produced from effluents of hydrogen fermentation with a production rate of 3.74 (±0.13) mmol L−1 h−1. The total bioenergy recovery by coproduction of hydrogen and methane from sugary wastewater reached 19.37 W and a total of 92.41% of substrate was converted to the biogas (hydrogen and methane) with two-phase anaerobic fermentation.  相似文献   

2.
The aim of this study was to promote biohydrogen production in an thermophilic anaerobic fluidized bed reactor (AFBR) at 55 °C using a mixture of sugar cane stillage and glucose at approximately 5000–5300 mg COD L−1. During a reduction in the hydraulic retention time (HRT) from 8, 6, 4, 2 and 1 h, H2 yields of 5.73 mmol g CODadded−1 were achieved (at HRT of 4 h, with organic loading rate of 52.7 kg COD m−3 d−1). The maximum volumetric H2 production of 0.78 L H2 h−1 L−1 was achieved using stillage as carbon source. In all operational phases, the H2 average content in the biogas was between 31.4 and 52.0%. Butyric fermentation was the predominant metabolic pathway. The microbial community in accordance with the DGGE bands profile was found similarity coefficient between 91 and 95% without significant changes in bacterial populations after co-substrate removal. Bacteria like Thermoanaerobacterium sp. and Clostridium sp. were identified.  相似文献   

3.
Dark fermentation of acid hydrolyzed ground wheat starch for bio-hydrogen production by periodic feeding and effluent removal was investigated at different feeding intervals. Ground wheat was acid hydrolyzed at pH = 3 and T = 121 °C for 30 min using an autoclave. The resulting sugar solution was subjected to dark fermentation with periodic feeding and effluent removal. The feed solution contained 9 ± 0.5 g L−1 total sugar supplemented with some nutrients. Depending on the feeding intervals hydraulic residence time (HRT) was varied between 6 and 60 h. Steady-state daily hydrogen production increased with decreasing HRT. The highest daily hydrogen production (305 ml d−1) and volumetric hydrogen production rate (1220 ml H2 L−1 d−1) were obtained at HRT of 6 h. Hydrogen yield (130 ml H2 g−1 total sugar) reached the highest level at HRT = 24 h. Effluent total sugar concentration decreased, biomass concentration and yield increased with increasing HRT indicating more effective sugar fermentation at high HRTs. Dark fermentation end product profile shifted from acetic to butyric acid with increasing HRT. High acetic/butyric acid ratio obtained at low HRTs resulted in high hydrogen yields.  相似文献   

4.
The production of hydrogen from soft-drink wastewater in two upflow anaerobic packed-bed reactors was evaluated. The results show that soft-drink wastewater is a good source for hydrogen generation. Data from both reactors indicate that the reactor without medium containing macro- and micronutrients (R2) provided a higher hydrogen yield (3.5 mol H2 mol−1 of sucrose) as compared to the reactor (R1) with a nutrient-containing medium (3.3 mol H2 mol−1 of sucrose). Reactor R2 continuously produced hydrogen, whereas reactor R1 exhibited a short period of production and produced lower amounts of hydrogen. Better hydrogen production rates and percentages of biogas were also observed for reactor R2, which produced 0.4 L h−1 L−1 and 15.8% of H2, compared to reactor R1, which produced 0.2 L h−1 L−1 and 2.6% of H2. The difference in performance between the reactors was likely due to changes in the metabolic pathway for hydrogen production and decreases in bed porosity as a result of excessive biomass growth in reactor R1. Molecular biological analyses of samples from reactors R1 and R2 indicated the presence of several microorganisms, including Clostridium (91% similarity), Enterobacter (93% similarity) and Klebsiella (97% similarity).  相似文献   

5.
Seventeen purple non-sulfur bacterial strains, isolated from the trophic lake Averno, Naples, Italy, were phylogenetically classified and their H2-producing performances were tested utilizing various synthetic substrates and the fermentation broth derived from the spontaneous fermentation of vegetable residues. All the strains showed the capability to produce hydrogen on at least one of the four carbon substrates tested (malic, lactic, acetic and succinic acid). On lactate, Rhodopseudomonas palustris strain AV33 showed the best maximum production rate (50.7 ± 2.6 mL (H2) L−1 h−1), with a mean rate, calculated on the whole period of production, of 17.9 mL ± 0.7 (H2) L−1 h−1. In the presence of acetate, AV33 produced only few mL of H2, but intracellularly accumulated poly-β-hydroxybutyrate up to a concentration of 21.4 ± 3.4% (w/w) of cell dry weight. Rp. palustris AV33 also produced H2 on the fermentation broth supplemented with Fe, with a maximum production rate of 16.4 ± 2.3 mL (H2) L−1 h−1 and a conversion yield of 44.2%.  相似文献   

6.
Anaerobic sequencing batch reactor (ASBR) process offers great potential for H2 production from wastewaters. In this study, an ASBR was used at first time for enhanced continuous H2 production from fungal pretreated cornstalk hydrolysate by Thermoanaerobacterium thermosaccharolyticum W16. The reactor was operated at different hydraulic retention times (HRTs) of 6, 12, 18, and 24 h by keeping the influent hydrolysate constant at 65 mmol sugars L−1. Results showed that increasing the HRT from 6 to 12 h led to the H2 production rate increased from 6.7 to the maximum of 9.6 mmol H2 L−1 h−1 and the substrate conversion reached 90.3%, although the H2 yield remained at the same level of 1.7 mol H2 mol−1 substrate. Taking into account both H2 production and substrate utilization efficiencies, the optimum HRT for continuous H2 production via an ASBR was determined at 12 h. Compared with other continuous H2 production processes, ASBR yield higher H2 production at relatively lower HRT. ASBR is shown to be another promising process for continuous fermentative H2 production from lignocellulosic biomass.  相似文献   

7.
Waste ground wheat was subjected to acid hydrolysis (pH = 3.0) at 90 °C for 15 min using an autoclave. The sugar solution obtained from acid hydrolysis was subjected to dark fermentation for hydrogen gas production after neutralization. In the first set of experiments, initial total sugar concentration was varied between 3.9 and 27.5 g L−1 at constant biomass (cell) concentration of 1.3 g L−1. Biomass concentration was varied between 0.28 g L−1 and 1.38 g L−1 at initial total sugar concentration of 7.2 ± 0.2 g L−1 in the second set of experiments. The highest hydrogen yield (1.46 mol H2 mol−1 glucose) and the specific formation rate (83.6 ml H2 g−1 cell h−1) were obtained with 10 g L−1 initial total sugar concentration. Biomass (cell) concentration affected the specific hydrogen production rate yielding the highest rate (1221 ml H2 g−1 cell h−1) and the yield at the lowest (0.28 g L−1) initial biomass concentration. The most suitable Xo/So ratio, maximizing the yield and specific rate of hydrogen gas formation was Xo/So = 0.037. Dark fermentation of acid hydrolyzed ground wheat was found to be more beneficial as compared to simultaneous bacterial hydrolysis and fermentation.  相似文献   

8.
Though ethanol-type fermentation has many advantages for improving hydrogen production rate (HPR) in continuously mode hydrogen producing system, information on this fermentation is very deficient. The effect of hydraulic retention time (HRT) on biohydrogen production and operational stability of ethanol-type fermentation was investigated in a continuous stirred tank reactor (CSTR) using molasses as substrate. Five HRTs were examined, ranging from 4 to 10 h. At HRT 5 h, the highest HPR of 12.27 mmol L−1 h−1 was obtained from ethanol-type fermentation in the pH range of 4.3–4.4. During the whole operation process, ethanol, butyrate and acetate were the predominant metabolites. A total COD concentration of ethanol and acetate accounted for above 73.3% of total soluble microbial products. Linear regression showed that HPR and ethanol production rate were proportionately correlated at all HRTs which could be expressed as y = 0.9821x − 3.5151 (r2 = 0.9498). It is meaningful that the proposed recovery of both hydrogen and ethanol from fermentation process can improve energy production rate and economic profit. Results demonstrated that the best energy production rate was 15.50 kJ L−1 h−1, occurred at HRT = 5 h.  相似文献   

9.
Continuous combined fermentation of ground wheat starch was realized in an annular-hybrid bioreactor (AHB) for hydrogen gas production. A mixture of pure cultures of Clostridium beijerinkii (DSMZ-791) and Rhodobacter sphaeroides-RV were used as seed cultures in combined fermentation. The feed contained 5 g L−1 ground wheat with some nutrient supplementation. Effects of hydraulic residence time (HRT) on the rate and yield of hydrogen gas formation were investigated. Steady-state daily hydrogen production decreased but, hydrogen yield increased with increasing HRT. The highest hydrogen yield was 90 ml g−1 starch at HRT of 6 days. Hydrolysis of starch and fermentation of glucose to volatile fatty acids (VFA) were readily realized at all HRTs. However, slow conversion of VFAs to H2 and CO2 by photo-fermentation caused accumulation of VFAs in the medium. Specific and volumetric rates of hydrogen formation also decreased with increasing HRT. High hydrogen yields obtained at high HRTs are due to partial fermentation of VFAs by Rhodobacter sp. The system should be operated at HRTs longer than 5 days for effective hydrogen gas formation by the dark and photo-fermentation bacteria.  相似文献   

10.
A unique thermophilic fermentative hydrogen-producing strain H53214 was isolated from a deep-sea hydrothermal vent environment, and identified as Caloranaerobacter azorensis based on bacterial 16S rRNA gene analysis. The optimum culture condition for hydrogen production by the bacterium, designated C. azorensis H53214, was investigated by the response surface methodology (RSM). Eight variables including the concentration of NaCl, glucose, yeast, tryptone, FeSO4 and MgSO4, initial pH and incubation temperature were screened based on the Plackett–Burman design. The results showed that initial pH, tryptone and yeast were significant variables, which were further optimized using the steepest ascent method and Box–Behnken design. The optimal culture conditions for hydrogen production were an initial pH of 7.7, 8.3 g L−1 tryptone and 7.9 g L−1 yeast. Under these conditions, the maximum cumulative hydrogen volume, hydrogen yield and maximum H2 production rate were 1.58 L H2 L−1 medium, 1.46 mol H2 mol−1 glucose and 25.7 mmol H2 g−1 cell dry weight (CDW) h−1, respectively. By comparison analysis, strain H53214 was superior to the most thermophilic hydrogen producers because of the high hydrogen production rate. In addition, the isolation of C. azorensis H53214 indicated the deep-sea hydrothermal environment might be a potential source for fermentative hydrogen-producing thermophiles.  相似文献   

11.
Cheese whey powder (CWP) solution was used as the raw material for hydrogen gas production by mesophilic (35 °C) and thermophilic (55 °C) dark fermentations at constant initial total sugar and bacteria concentrations. Thermophilic fermentation yielded higher cumulative hydrogen formation (CHF = 171 mL), higher hydrogen yield (111 mL H2 g−1 total sugar), and higher hydrogen formation rate (3.46 mL H2 L−1 h−1) as compared to mesophilic fermentation. CHF in both cases were correlated with the Gompertz equation and the constants were determined. Despite the longer lag phase, thermophilic fermentation yielded higher specific H2 formation rate (2.10 mL H2 g−1cells h−1). Favorable results obtained in thermophilic fermentation were probably due to elimination of H2 consuming bacteria at high temperatures and selection of fast hydrogen gas producers.  相似文献   

12.
The present study aimed to evaluate the hydrogen production of a microbial consortium using different concentrations of sugarcane vinasse (2–12 g COD L−1) at 37 °C and 55 °C. In mesophilic tests, the increase in vinasse concentration did not significantly impact the hydrogen yield (HY) (from 1.72 to 2.23 mmol H2 g−1 CODinfluent) but had a positive effect on the hydrogen production potential (P) and hydrogen production rate (Rm). On the other hand, the increase in the substrate concentration caused a drop in HY from 2.31 to 0.44 mmol H2 g−1 CODinfluent in the tests performed at 55 °C with vinasse concentrations from 2 to 12 g COD L−1. The mesophilic community was composed of different species within the Clostridium genus, and the thermophilic community was dominated by organisms affiliated with the Thermoanaerobacter genus. Not all isolates affiliated with the Clostridium genus contributed to a high HY, as the homoacetogenic pathway can occur.  相似文献   

13.
Hydrogen gas production by photo-fermentation of dark fermentation effluent of acid hydrolyzed wheat starch was investigated at different hydraulic residence times (HRT = 1-10 days). Pure Rhodobacter sphaeroides (NRRL B-1727) culture was used in continuous photo-fermentation by periodic feeding and effluent removal. The highest daily hydrogen gas production (85 ml d−1) was obtained at HRT = 4 days (96 h) while the highest hydrogen yield (1200 ml H2 g−1 TVFA) was realized at HRT = 196 h. Specific and volumetric hydrogen formation rates were also the highest at HRT = 96 h. Steady-state biomass concentrations and biomass yields increased with increasing HRT. TVFA loading rates of 0.32 g L−1 d−1 and 0.51 g L−1 d−1 resulted in the highest hydrogen yield and formation rate, respectively. Hydrogen gas yield obtained in this study compares favorably with the relevant literature reports probably due to operation by periodic feeding and effluent removal.  相似文献   

14.
Sulfate-reducing bacteria (SRB) have an extremely high hydrogenase activity and in natural habitats where sulfate is limited, produce hydrogen fermentatively. However, the production of hydrogen by these microorganisms has been poorly explored. In this study we investigated the potential of SRB for H2 production using the model organism Desulfovibrio vulgaris Hildenborough. Among the three substrates tested (lactate, formate and ethanol), the highest H2 production was observed from formate, with 320 mL L−1medium of H2 being produced, while 21 and 5 mL L−1medium were produced from lactate and ethanol, respectively. By optimizing reaction conditions such as initial pH, metal cofactors, substrate concentration and cell load, a production of 560 mL L−1medium of H2 was obtained in an anaerobic stirred tank reactor (ASTR). In addition, a high specific hydrogen production rate (4.2 L g−1dcw d−1; 7 mmol g−1dcw h−1) and 100% efficiency of substrate conversion were achieved. These results demonstrate for the first time the potential of sulfate reducing bacteria for H2 production from formate.  相似文献   

15.
Biohydrogen is an ideal energy carrier for mobile chemical fuel cells, but its use is often limited by unavailability of sustained H2 production system(s). Here, we developed a compact system for H2 production from formate based on immobilized cells of recombinant Escherichia coli SH5. Three different matrices were tested as immobilization medium, among which agar showed the best performance in mechanical stability and permeability of substrate(s) and/or gaseous products (H2 and CO2). To explore and optimize the H2 production capability of the immobilized cells, the conditions for cell immobilization including cell loading and agar concentration as well as the factors affecting H2 production rate such as temperature, pH, and substrate concentration were studied in detail. A maximum volumetric production rate of 2.4 L H2 L−1 h−1 was obtained when the immobilized cells were incubated with 350 mM sodium formate at pH 6.5 and 37 °C. Periodic supplementation of 200 mM formate with 20 mM glucose at pH 6.5 maintained the high H2 production rate for a prolonged period of 10 h. We believe that our process can be developed for sustained H2 production and is applicable to the operation of fuel cells in small-scale.  相似文献   

16.
Ground wheat powder solution (10 g L−1) was subjected to combined dark and light fermentations for bio-hydrogen production by fed-batch operation. A mixture of heat treated anaerobic sludge (AN) and Rhodobacter sphaeroides-NRRL (RS-NRRL) were used as the mixed culture of dark and light fermentation bacteria with an initial dark/light biomass ratio of 1/2. Effects of wheat starch loading rate on the rate and yield of bio-hydrogen formation were investigated. The highest cumulative hydrogen formation (CHF = 3460 ml), hydrogen yield (201 ml H2 g−1 starch) and formation rate (18.1 ml h−1) were obtained with a starch loading rate of 80.4 mg S h−1. Complete starch hydrolysis and glucose fermentation were achieved within 96 h of fed-batch operation producing volatile fatty acids (VFA) and H2. Fermentation of VFAs by photo-fermentation for bio-hydrogen production was most effective at starch loading rate of 80.4 mg S h−1. Hydrogen formation by combined fermentation took place by a fast dark fermentation followed by a rather slow light fermentation after a lag period.  相似文献   

17.
This study was devoted to investigate production of hydrogen gas from acid hydrolyzed molasses by Escherichia coli HD701 and to explore the possible use of the waste bacterial biomass in biosorption technology. In variable substrate concentration experiments (1, 2.5, 5, 10 and 15 g L−1), the highest cumulative hydrogen gas (570 ml H2 L−1) and formation rate (19 ml H2 h−1 L−1) were obtained from 10 g L−1 reducing sugars. However, the highest yield (132 ml H2 g−1 reducing sugars) was obtained at a moderate hydrogen formation rate (11 ml H2 h−1 L−1) from 2.5 g L−1 reducing sugars. Subsequent to H2 production, the waste E. coli biomass was collected and its biosorption efficiency for Cd2+ and Zn2+ was investigated. The biosorption kinetics of both heavy metals fitted well with the pseudo second-order kinetic model. Based on the Langmuir biosorption isotherm, the maximum biosorption capacities (qmax) of E. coli waste biomass for Cd2+ and Zn2+ were 162.1 and 137.9 (mg/g), respectively. These qmax values are higher than those of many other previously studied biosorbents and were around three times more than that of aerobically grown E. coli. The FTIR spectra showed an appearance of strong peaks for the amine groups and an increase in the intensity of many other functional groups in the waste biomass of E. coli after hydrogen production in comparison to that of aerobically grown E. coli which explain the higher biosorption capacity for Cd2+ or Zn2+ by the waste biomass of E. coli after hydrogen production. These results indicate that E. coli waste biomass after hydrogen production can be efficiently used in biosorption technology. Interlinking such biotechnologies is potentially possible in future applications to reduce the cost of the biosorption technology and duplicate the benefits of biological H2 production technology.  相似文献   

18.
Photofermentative H2 production at higher rate is desired to make H2 viable as cheap energy carrier. The process is influenced by C/N composition, pH levels, temperature, light intensity etc. In this study, Rhodobacter sphaeroides strain O.U 001 was used in the annular photobioreactor with working volume 1 L, initial pH of 6.7 ± 0.2, inoculum age 36 h, inoculum volume 10% (v/v), 250 rpm stirring and light intensity of 15 ± 1.1 W m−2. The effect of parameters, i.e. variation in concentration of DL malic acid, L glutamic acid and temperature on the H2 production was noted using three factor three level full factorial designs. Surface and contour plots of the regression models revealed optimum H2 production rate of 7.97 mL H2 L−1 h−1 at 32 °C with 2.012 g L−1 DL malic acid and 0.297 g L−1 L glutamic acid, which showed an excellent correlation (99.36%) with experimental H2 production rate of 7.92 mL H2 L−1 h−1.  相似文献   

19.
Hydrogen formation performances of different anaerobic bacteria were investigated in batch dark fermentation of waste wheat powder solution (WPS). Serum bottles containing wheat powder were inoculated with pure cultures of Clostridium acetobutylicum (CAB), Clostridium butyricum (CB), Enterobacter aerogenes (EA), heat-treated anaerobic sludge (ANS) and a mixture of those cultures (MIX). Cumulative hydrogen formation (CHF), hydrogen yield (HY) and specific hydrogen production rate (SHPR) were determined for every culture. The heat-treated anaerobic sludge was found to be the most effective culture with a cumulative hydrogen formation of 560 ml, hydrogen yield of 223 ml H2 g−1 starch and a specific hydrogen production rate of 32.1 ml H2 g−1 h−1.  相似文献   

20.
The present study deals with the optimization of pretreatment conditions followed by thermophilic dark fermentative hydrogen production using Anabaena PCC 7120 as substrate by mixed microflora. Different airlift photobioreactors with ratio of area of downcomer and riser (Ad/Ar) in range of 0.4–3.2 were considered. Maximum biomass concentration of 1.63 g L−1 in 9 d under light intensity of 120 μE m−2 s−1 was observed at Ad/Ar of 1.6. The mixing time of the reactors was inversely proportional to Ad/Ar. Maximal H2 production was found to be 1600 mL L−1 upon pretreatment with amylase followed by thermophilic fermentation for 24 h compared to other methods like sonication (200 mL L−1), autoclave (600 mL L−1) and HCl treatment (1230 mL L−1). The decrease of pH from 6.5 to 5.0 during fermentation was due to the accumulation of volatile fatty acids. Amylase pretreatment gave higher reducible sugar content of 7.6 g L−1 as compare to other pretreatments. Thermophilic fermentation of pretreated Anabaena biomass by mixed bacterial culture was found suitable for H2 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号