首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A new scheme has been developed to fabricate high‐performance forward osmosis (FO) membranes through the interfacial polymerization reaction on porous polymeric supports. p‐Phenylenediamine and 1,3,5‐trimesoylchloride were adopted as the monomers for the in‐situ polycondensation reaction to form a thin aromatic polyamide selective layer of 150 nm in thickness on the substrate surface, a lab‐made polyethersulfone (PES)/sulfonated polysulfone (SPSf)‐alloyed porous membrane with enhanced hydrophilicity. Under FO tests, the FO membrane achieved a higher water flux of 69.8 LMH when against deionized water and 25.2 LMH when against a model 3.5 wt % NaCl solution under 5.0 M NaCl as the draw solution in the pressure‐retarded osmosis mode. The PES/SPSf thin‐film‐composite (TFC)‐FO membrane has a smaller structural parameter S of 238 μm than those reported data. The morphology and topology of substrates and TFC‐FO membranes have been studied by means of atomic force microscopy and scanning electronic microscopy. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

2.
Polyamide thin film composite hollow fiber membranes have advantages in their unique structure compared to flat sheet membranes. This study examined interfacial polymerization methods for fabricating pilot scale hollow fiber membranes (membrane area: 1.2 m2, number of hollow fiber strands: 1200). For use in osmotic pressure‐driven processes, a one‐pot hydrophilic interfacial polymerization procedure was developed simultaneously to modify the surface property and synthesize polyamide thin film. With the procedure, a pilot scale module has a water flux of 13 LMH using a draw solution of 0.6M NaCl and a feed solution of distilled water through the design of the module configuration. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46110.  相似文献   

3.
There has been a resurgence of interest in forward osmosis (FO) as a potential means of desalination, dewatering and in pressure retarded osmosis, which Sidney Loeb was advocating over 3 decades ago. This paper describes the characteristics and potential applications of a newly developed FO hollow fiber membrane, which was fabricated by interfacial polymerization on the inner surface of a polyethersulfone (PES) hollow fiber. This FO membrane presents excellent intrinsic separation properties, with a water flux of 42.6 L/m2 h using 0.5 M NaCl as the draw solution and DI water as the feed with the active layer facing the draw solution orientation at 23 °C. The corresponding ratio of salt flux to water flux was only 0.094 g/L, which is superior to all other FO membranes reported in the open literature. To evaluate different application scenarios, various NaCl solutions (500 ppm (8.6 mM), 1 wt.% (0.17 M) and 3.5 wt.% (0.59 M)) were used as the feed water to test the performance of the FO membrane. The membrane can achieve a water flux of 12.4 L/m2 h with 3.5 wt.% NaCl solution as the feed and 2 M NaCl as the draw solution, suggesting it has good potential for seawater desalination.  相似文献   

4.
The effect of sulfonation and bromination‐sulfonation on the gas transport properties of polyphenylene oxide has been investigated. These high‐performance modified polymers have been studied in the form of TFC membranes by solution coating on the skin side of polyetherimide hollow fibers. TFC membrane modules prepared from sulfonated‐brominated polyphenylene oxide as the active layer coated on polyetherimide hollow fibers. Stability of the TFC membranes was greatly improved when a wet feed stream was used instead of a dry one. Water vapor in the feed stream most likely prevented the active layer from stress cracking on drying. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 275–282, 2001  相似文献   

5.
Poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) can be crosslinked by interfacial polymerization to develop a positively charged dense network structure. According to this mechanism, a positively charged hollow‐fiber composite nanofiltration (NF) membrane was prepared by quaternization to achieve a crosslinked PDMAEMA gel layer on the outer surface of polysulfone hollow‐fiber ultrafiltration (UF) membranes with a PDMAEMA aqueous solution as a coating solution and p‐xylylene dichloride as an agent. The preparation conditions, including the PDMAEMA concentration, content of additive in the coating solution, catalyzer, alkali, crosslinking temperature, and hollow‐fiber substrate membrane, were studied. Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the structure of the membranes. This membrane had a rejection to inorganic salts in aqueous solution. The rejection of MgSO4 (2 g/L aqueous solution at 0.7 MPa and 25°C) was above 98%, and the flux was about 19.5 L m?2 h?1. Moreover, the composite NF membranes showed good stability in the water‐phase filtration process. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Novel fabrication perspectives have been demonstrated to molecularly construct robust hollow fiber membrane supports for high performance thin‐film composite (TFC) pressure retarded osmosis (PRO) membranes. For the first time, we found that the desirable hollow fiber supports should possess high stretch resistance and acceptable ductility. The microstructure strength of the hollow fiber support may have more weights on overall robustness of the TFC PRO membranes than the apparent cross‐section morphology. Effectively manipulating the kinetics of phase inversion during spinning by maneuvering bore fluid chemistry, and polymer solution composition is a promising method to tailor the strength of hollow fiber supports. Prestabilization of the TFC membranes at elevated lumen pressures can significantly improve their PRO performance. The newly developed TFC PRO hollow fiber membranes exhibit a power density as high as 16.5 W/m2 and a very low specific reverse salt flux (Js/Jw) of 0.015 mol/L at a hydraulic pressure of 15 bar using synthetic seawater brine (1.0 M NaCl) as the draw solution. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1107–1119, 2014  相似文献   

7.
The poly(2‐hydroxyethyl methacrylate) grafted titanium dioxide nanoparticles were synthesized and added to the substrate of flat‐sheet thin film composite forward osmosis (TFC‐FO) membranes. The hydrophilicity of substrate was improved, which was advantageous to enhance the water flux of TFC‐FO membranes. The membranes containing a 3 wt % TiO2‐PHEMA in the substrate exhibited a finger‐like structure combined with sponge‐like structure, while those with lower or without TiO2‐PHEMA content showed fully finger‐like structures. As for FO performance, the TFC‐FO membranes with 3 wt % TiO2‐PHEMA content achieved the highest water flux of 42.8 LMH and 24.2 LMH against the DI water using 2M NaCl as the draw solution tested under the active layer against draw solution (AL‐DS) mode and active layer against feed solution (AL‐FS) mode, respectively. It was proven that the hydrophilic property of membrane substrates was a strong factor influencing the water flux in FO tests. Furthermore, the structural parameter was remarkably decreased with an increase of TiO2‐PHEMA content in membrane substrate, indicating the reducing of internal concentration polarization. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43719.  相似文献   

8.
For the first time, the effects of free volume in thin‐film composite (TFC) membranes on membrane performance for forward osmosis and pressure retarded osmosis (PRO) processes were studied in this work. To manipulate the free volume in the TFC layer, a bulky monomer (i.e., p‐xylylenediamine) was blended into the interfacial polymerization and methanol immersion was conducted to swell up the TFC layer. Results from positron annihilation lifetime spectroscopy (PALS) show that p‐xylylenediamine blending and methanol induced swelling enlarge and broaden the free volume cavity. In addition, the performance of TFC membranes consisting of different free volumes were examined in terms of water flux, reverse salt flux, and power density under high pressure PRO operations. The TFC‐B‐5 membrane (i.e., a TFC membrane made of blending monomers) with a moderate free volume shows the highest power density of 6.0 W/m2 at 9 bar in comparison of TFC membranes with other free volumes. After PRO operations, it is found that the free volume of TFC layers decreases due to high pressure compression, but membrane transport properties in terms of water and salt permeability increase. Interestingly, the membrane performance in terms of resistance against high pressures and power density stay the same. A slow positron beam was used to investigate the microstructure changes of the TFC layer after PRO operations. Compaction in free volume occurs and the TFC layer becomes thinner under PRO tests but no visible defects can be observed by both scanning electronic microscopy and PALS. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4749–4761, 2013  相似文献   

9.
The layer-by-layer (LBL) polyelectrolyte deposited membranes have drawn increasing attention in various applications due to the ease of selective layer formation and their stability and versatility. In this study, the LBL deposition was performed at the inner surface of the polyethersulfone (PES) hollow fiber substrate to form composite nanofiltration (NF) membrane. The semi-dynamic deposition procedure was adopted with the aid of syringes. The newly developed inner deposited (id-LBL) membranes were then tested in NF and forward osmosis (FO) applications and the performance were compared with outer surface deposition as well as some literature data. The id-LBL membranes could not only withstand higher operating pressure but also possess superior hardness rejection especially in high concentration mixed salt solutions (more than 95% rejection to Mg2+ and Ca2+ in a 5000 ppm total dissolved salt (TDS) mixture under 4.8 bar). As for the FO process, with only two layer deposition, the id-LBL membranes also demonstrated significant performance improvement with increased water flux (up to 70 L/m2 h using 0.5 M MgCl2 as draw solution in active layer facing draw solution configuration) and reduced salt leakage (around 0.5 g/m2 h using 1 M MgCl2 draw solution in active layer facing feed water configuration). This study suggests that for hollow fiber substrate, the inner surface is more suitable for the formation of the selective layer via LBL deposition than the outer surface.  相似文献   

10.
Development and use of novel membranes for forward osmosis (FO) applications have gained popularity throughout the world. To enhance FO membrane performance, a novel thin-film nanocomposite membrane was fabricated by interfacial polymerization incorporating Fullerenol (C60(OH)n) nanomaterial, having n in the range of 24–28 into the active layer. Different concentrations of fullerenol loading (100, 200, 400, and 800 ppm) were added to the top skin layer. The structural and surface properties of the pure thin-film composite membrane (TFC) and fullerenol-incorporated thin-film nanocomposite (FTFC) membranes, were characterized by ATR-FTIR, SEM, and AFM. FO performance and separation properties were evaluated in terms of water flux, reverse salt flux, antifouling propensity, water permeability and salt permeability for all TFC and FTFC membranes. Osmotic performance tests showed that FTFC membranes achieved higher water flux and reverse salt flux selectivity compared with those of TFC membranes. The FTFC membrane with a fullerenol loading of 400 ppm exhibited a water flux of 26.1 L m?2 h?1 (LMH), which is 83.03% higher than that of the TFC membrane with a specific reverse salt flux of 0.18 g/L using 1 M sodium chloride draw solution against deionized water in FO mode. The fullerenol incorporation in FTFC membranes also contributed to a decreased fouling propensity.  相似文献   

11.
A novel coating technique, named as two‐way coating (TWC), was explored to prepare hollow fiber composite (HFC) nanofiltration (NF) membrane through interfacial polymerization from piperazine (PIP) and trimesoyl chloride (TMC) on the lumen side of hollow fiber polysulfone ultrafiltration membrane with an effective membrane area of 0.4 m2. The optimum preparation conditions were systematically investigated and obtained as follows: PIP 0.023 mol/L, TMC 0.0057 mol/L, air blowing rate 2.7 m/s for 30 min after aqueous coating, aqueous coating pressure 0.1 MPa, organic solution flowing rate 0.32 m/s, and heat treating time 3 min. The resultant HFC membrane showed a high selectivity of divalent ion and monovalent ion. Salt rejections of MgSO4 and NaCl were 98.13 and 18.6% with the permeate flux of 32.6 and 40.2 L m?2 h?1 at 0.7 MPa, respectively. Field emission scanning electron microscopy images indicated that composite membrane prepared by TWC technique had a uniform active layer from the upper end to the bottom of the hollow fiber. And the salt rejection and permeate flux showed almost no difference between different membrane sections. Stability results suggested that good reproducibility could be obtained by TWC technique for the preparation of high‐performance HFC NF membrane. The resultant NF membrane showed a high removal rate of chemical oxygen demand and chroma of landfill leachate which were approximately 100%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41187.  相似文献   

12.
The polyvinylidene fluoride (PVDF)/polyvinyl alcohol (PVA) polymer solutions were coated on the outer surface of PVDF matrix hollow fiber membrane. On the principle of the homogeneous‐reinforced (HR) membrane technology, the reinforced PVDF/PVA (RFA) hollow fiber membranes prepared through the dry‐wet spinning method. The performance of the RFA membranes varies with the PVA concentration in the polymer solution and is characterized in terms of pure water flux (PWF), porosity, a mechanical strength test, and morphology observations by a scanning electron microscopy (SEM). The results of this study indicate that PVA can apparently improve the hydrophilicity of the PVDF hollow fiber membranes. The growing enrichment of the hydrophilic components PVA on the membrane surface is determined by X‐ray photoelectron spectroscopy. The RFA membranes have a favorable interfacial bonding between the coating layer (PVDF/PVA) and the matrix membrane (PVDF hollow fiber membrane), as shown by SEM. The elongation at break of the RFA membranes increases much more than that of the matrix membrane that is endowed with the better flexibility of the membrane performance. PWF decreases much more compared with that of the matrix membrane. The RFA membranes have a lower flux decline degree during the process of protein solution and ink solution filtration compared with that of the matrix membrane. POLYM. ENG. SCI., 54:276–287, 2014. © 2013 Society of Plastics Engineers  相似文献   

13.
A new cellulose acetate propionate (CAP) polymer has been synthesized and used to prepare high‐performance forward osmosis (FO) membranes. With an almost equal degree of substitution of acetyl and propionyl groups, the CAP‐based dense membranes show more balanced physicochemical properties than conventional cellulose acetate (CA)‐based membranes for FO applications. The former have a lower equilibrium water content (6.6 wt. %), a lower salt diffusivity (1.6×1014 m2 s?1) and a much lower salt partition coefficient (0.013) compared with the latter. The as‐prepared and annealed CAP‐based hollow fibers have a rough surface with an average pore radius of 0.31 nm and a molecular weight cut off of 226 Da. At a transmembrane pressure of 1 bar, the dual‐layer CAP‐CA hollow fibers show a pure water permeability of 0.80 L m?2 h?1 bar?1 (LMH/bar) and a rejection of 75.5% to NaCl. The CAP‐CA hollow fibers were first tested for their FO performance using 2.0 M NaCl draw solution and deionized water feed. An impressive water flux of 17.5 L m?2 h?1 (LMH) and a reverse salt flux of 2.5 g m?2 h?1 (gMH) were achieved with the draw solution running against the active CAP layer in the FO tests. The very low reverse salt flux is mainly resulting from the low salt diffusivity and salt partition coefficient of the CAP material. In a hybrid system combining FO and membrane distillation for wastewater reclamation, the newly developed hollow fibers show very encouraging results, that is, water production rate being 13–13.7 LMH, with a MgCl2 draw solution of only 0.5 M and an operating temperature of 343 K due to the incorporation of bulky propionyl groups with balanced physiochemical properties. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1245–1254, 2013  相似文献   

14.
High performance thin-film composite (TFC) hollow fiber membranes have been developed for pervaporation dehydration by second interfacial polymerization (SIP) modification with three kinds of amine-functionalized β-cyclodextrin (amine-CDs), which were synthesized by modifying β-CD with ammonia, ethylenediamine (EDA), and tris(2-aminoethyl)amine, respectively. The chemical properties of amine-CDs and SIP-modified TFC membranes were characterized by various techniques. The effects of amine-CD type and SIP parameters (pH or concentration of CD-EDA solution) were studied systematically to acquire the optimized selective layer of TFC membranes for ethanol dehydration. Among all SIP-modified TFC membranes, the one with SIP by 2 wt% CD-EDA aqueous solution (pH = 2) exhibited the most outstanding separation performance with a ultrahigh permeation flux (3,018.0 ± 12.0 g/m2 hr) and permeate concentration (98.7 ± 0.2 wt% water) at 50°C (equivalent to separation factor of 415), contributed by the effectively incorporated CD with rich hydrophilic functional groups and intrinsic nanocavities facilitating the passage of water molecules.  相似文献   

15.
Thin-film nanocomposite (TFN) membranes were fabricated by interfacial polymerization of a polyamide (PA) layer on the shell side of hollow fiber membrane supports. TiO2 nanoparticle loadings in the thin-film layer were 0.01, 0.05, and 0.20 wt %. Nanoparticle-free PA thin-film composite (TFC) membranes served as the comparative basis. The TFN membranes were characterized in terms of the chemical composition, structure, and surface properties of the separation layer. Incorporating nanoTiO2 improved membrane permeability up to 12.6-fold. During preliminary laboratory-scale evaluation, TFN membranes showed lower salt rejection but higher TOC rejection in comparisons with the corresponding values for TFC controls. Based on the performance in lab-scale tests, TFN membranes with 0.01 wt % nanoTiO2 loading were selected for an evaluation at the pilot scale with synthetic surface water as the feed. While the permeate flux during long-term pilot-scale operation gradually decreased for TFC membranes, TFN membranes had a higher initial permeate flux that gradually increased with time. The TOC rejection by TFN and TFC membranes was comparable. We conclude that TFN membranes show promise for full-scale surface water treatment applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48205.  相似文献   

16.
Polydimethylsiloxane (PDMS) hollow‐fiber membranes grafted with 1H,1H,9H‐hexadecafluorononyl methacrylate (HDFNMA), which is a fluoroalkyl methacrylate, using a 60Co irradiation source, were characterized and applied to pervaporation. The PDMS hollow‐fiber membranes were filled with N2 gas and sealed. The membranes and the HDFNMA solution were then irradiated simultaneously. In the HDFNMA solution, graft polymerization was performed. The degree of grafting of the outside surface of the hollow fiber was greater than that in the inside surface of the hollow fiber. In the grafted PDMS hollow‐fiber membranes, the best separation performance was shown due to the introduced hydrophobic polymer, poly(HDFNMA). The grafted membrane had a microphase‐separated structure, that is, a separated structure of PDMS and graft‐polymerized HDFNMA. The permeability of molecules in the poly(HDFNMA) phase was so low that the diffusion of molecules was prevented in the active layer with many poly(HDFNMA) domains, as the feed solution was introduced through the inside of the hollow fibers and the outside was vacuumed. As the feed solution was introduced through the outside of the hollow fibers and the inside was vacuumed, the diffusion of molecules was not prevented in the active layer with few poly(HDFNMA) domains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1573–1580, 2003  相似文献   

17.
The inner and outer surfaces of a porous hollow fiber polysulfone support are compared as substrates for the synthesis of polyamide thin-film composite (TFC) membranes by interfacial polymerization. While both surfaces have pores common of microfiltration membranes, the inner surface has a larger pore diameter than the outer surface (2,700 nm compared to 950 nm). The inner TFC membrane showed higher water nanofiltration permeance than the outer (2.20 ± 0.17 compared to 0.13 ± 0.03 L m−2 hr−1 bar−1). This was due to the influence of the porosity and roughness, which were different on both support surfaces. These membranes are interesting because they were synthesized in a hollow fiber support with a high membrane area per volume unit (~6,900 m2/m3) and the substrate used was commercial, which means that the TFC membrane obtained is suitable for industrial application. A mathematical simulation of the nanofiltration run with COMSOL Multiphysics 5.3 software confirmed the experimental trends observed.  相似文献   

18.
Composite hollow fiber membranes are fabricated in a one‐step process by superimposing the phase inversion process with interfacial polymerization on the lumen side of the fiber. A pulsation module in the bore fluid channel pulsates the bore fluid flow and leads to hollow fiber membranes with sinusoidal geometry. The fabrication of composite hollow fiber membranes with sinusoidal geometry is focus of this work. The sinusoidal geometry leads to reduced concentration polarization effects in membrane applications.  相似文献   

19.
To improve the pervaporation performance in separating an aqueous ethanol solution, polyamide thin‐film composite (TFC) membranes (m‐tolidine‐H‐TMC/mPAN) were prepared through the interfacial polymerization reaction between trimesoyl chloride (TMC) and 2,2'‐dimethylbenzidine hydrochloride (m‐tolidine‐H) on the surface of a modified polyacrylonitrile (mPAN) membrane. The effects of the feed ethanol concentration on the pervaporation performance and the durability of m‐tolidine‐H‐TMC/mPAN TFC membranes were investigated. To choose the optimal mPAN membrane as the TFC substrate, the effect of hydrolysis time on the chemical properties and separation performance of an mPAN substrate was also studied. An appropriate hydrolysis time of 15 min was chosen to obtain the mPAN substrate due to the corresponding high permeation flux. The m‐tolidine‐H‐TMC/mPAN TFC membrane exhibited a high pervaporation performance for ethanol dehydration. A positron annihilation lifetime spectroscopy experiment was used to estimate the mean free‐volume radius of the m‐tolidine‐H‐TMC polyamide selective layer, which lay between the radii of the water and ethanol molecules. © 2013 Society of Chemical Industry  相似文献   

20.
Through the use of thermal polymerization, poly(vinylidene fluoride) (PVDF) hollow‐fiber membranes modified by a thin layer of molecularly imprinted polymers (MIPs) were developed for the selective separation of levofloxacin. To demonstrate the changes induced by thermal polymerization, PVDF hollow‐fiber membranes with different modification degrees by repeated polymerization were weighed. The total weight of the imprinted membranes increased by 14 μg/cm2 after a five‐cycle polymerization. An increase in the membrane weight indicated the deposition of an MIP layer on the external surface of PVDF hollow‐fiber membranes during each polymerization cycle, which was also characterized by scanning electron microscopy. MIP membranes with different degrees of surface modification provided highly selective binding of levofloxacin. Both hollow‐fiber MIP membranes and nonimprinted membranes showed enhanced adsorption of levofloxacin and ofloxacin gradually with an increase in the modification degrees of PVDF hollow‐fiber membranes to a maximum value followed by a decrease. These results indicate that thermal polymerization indeed produces an MIP layer on the external surface of PVDF hollow‐fiber membranes and that it is feasible to control the permeability by repeated polymerization cycles. Different solvent systems in the permeation experiments were used to understand the hydrophobic interaction as one of the results of the binding specificity of MIP membranes. Selective separation was obtained by multisite binding to the template via ionic, hydrogen‐bond, and hydrophobic interactions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号