首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The least squares method for computing colorimetric weighting tables is presented and its connection with the optimum weights method is investigated. Each requires solving three linear systems of equations with the same coefficient matrix but three different right hand side vectors. It is shown that the two methods have nearly the same performance when the wavelength interval of the data is large. The two methods however, will perform differently when Δλ is small. Comparisons are also made between the least squares method, the optimum weights method, the zero‐ and second‐order weighting tables, and the ASTM weighting tables, both the original 1985 tables and the new 2013 Tables V and VI. The results show that the least squares method is the best for measurement intervals equal to or lower than 10 nm, and is competitive with the optimum weights method for 20 nm steps. The results presented in this article will contribute to the work of CIE Technical Committee TC1‐71 Tristimulus Integration as it seeks to make recommendations for the calculation of tristimulus values. © 2015 Wiley Periodicals, Inc. Col Res Appl, 41, 125–142, 2016  相似文献   

2.
Abstract. A symbolic method which can be used to obtain the asymptotic bias and variance coefficients to order O(1/n) for estimators in stationary time series is discussed. Using this method, the large‐sample bias of the Burg estimator in the AR(p) for p = 1, 2, 3 is shown to be equal to that of the least squares estimators in both the known and unknown mean cases. Previous researchers have only been able to obtain simulation results for the Burg estimator's bias because this problem is too intractable without using computer algebra. The asymptotic bias coefficient to O(1/n) of Yule–Walker as well as least squares estimates is also derived in AR(3) models. Our asymptotic results show that for the AR(3), just as in the AR(2), the Yule–Walker estimates have a large bias when the parameters are near the nonstationary boundary. The least squares and Burg estimates are much better in this situation. Simulation results confirm our findings.  相似文献   

3.
We develop a robust least squares estimator for autoregressions with possibly heavy tailed errors. Robustness to heavy tails is ensured by negligibly trimming the squared error according to extreme values of the error and regressors. Tail‐trimming ensures asymptotic normality and super‐‐convergence with a rate comparable to the highest achieved amongst M‐estimators for stationary data. Moreover, tail‐trimming ensures robustness to heavy tails in both small and large samples. By comparison, existing robust estimators are not as robust in small samples, have a slower rate of convergence when the variance is infinite, or are not asymptotically normal. We present a consistent estimator of the covariance matrix and treat classic inference without knowledge of the rate of convergence. A simulation study demonstrates the sharpness and approximate normality of the estimator, and we apply the estimator to financial returns data. Finally, tail‐trimming can be easily extended beyond least squares estimation for a linear stationary AR model. We discuss extensions to quasi‐maximum likelihood for GARCH, weighted least squares for a possibly non‐stationary random coefficient autoregression, and empirical likelihood for robust confidence region estimation, in each case for models with possibly heavy tailed errors.  相似文献   

4.
State estimation from plant measurements plays an important role in advanced monitoring and control technologies, especially for chemical processes with nonlinear dynamics and significant levels of process and sensor noise. Several types of state estimators have been shown to provide high‐quality estimates that are robust to significant process disturbances and model errors. These estimators require a dynamic model of the process, including the statistics of the stochastic disturbances affecting the states and measurements. The goal of this article is to introduce a design method for nonlinear state estimation including the following steps: (i) nonlinear process model selection, (ii) stochastic disturbance model selection, (iii) covariance identification from operating data, and (iv) estimator selection and implementation. Results on the implementation of this design method in nonlinear examples (CSTR and large dimensional polymerization process) show that the linear time‐varying autocovariance least‐squares technique accurately estimates the noise covariances for the examples analyzed, providing a good set of such covariances for the state estimators implemented. On the estimation implementation, a case study of a chemical reactor demonstrates the better capabilities of MHE when compared with the extended Kalman filter. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

5.
Abstract. Large sample properties of the least‐squares and weighted least‐squares estimates of the autoregressive parameter of the explosive random‐coefficient AR(1) process are discussed. It is shown that, contrary to the standard AR(1) case, the least‐squares estimator is inconsistent whereas the weighted least‐squares estimator is consistent and asymptotically normal even when the error process is not necessarily Gaussian. Conditional asymptotics on the event that a certain limiting random variable is non‐zero is also discussed.  相似文献   

6.
Abstract. We treat a problem of estimating unknown coefficients of a time series regression when the variance of the error changes with time, i.e. when a process which the error term obeys is nonstationary. First, we show the weak consistency of the ordinary least squares estimator for the coefficients of a polynomial regression under some assumptions on the covariance structure of the error process. Next, we propose a nonparametric method for estimating the variance of the error process and a weighted least squares estimator of the regression coefficients, which is constructed by using the estimator of the variance. We investigate statistical properties of our proposed estimator in the following way. We consider the prediction of a future value of a linear trend by using our proposed estimator and evaluate its prediction error. By simulation studies, we compare the prediction error of the predictor constructed by using our proposed estimator with the prediction errors obtained for other estimators including the ordinary least squares estimator when the variance of the error process increases with time and the sample sizes are small. As a result, our proposed estimator seems to be reasonable.  相似文献   

7.
Ordinary least squares (OLS) algorithm is widely applied in process measurement, because the sensor model used to estimate unknown parameters can be approximated through multivariate linear model. However, with few or noisy data or multi-collinearity, unbiased OLS leads to large variance. Biased estimators, especially ridge es-timator, have been introduced to improve OLS by trading bias for variance. Ridge estimator is feasible as an esti-mator with smaller variance. At the same confidence level, with additive noise as the normal random variable, the less variance one estimator has, the shorter the two-sided symmetric confidence interval is. However, this finding is limited to the unbiased estimator and few studies analyze and compare the confidence levels between ridge estima-tor and OLS. This paper derives the matrix of ridge parameters under necessary and sufficient conditions based on which ridge estimator is superior to OLS in terms of mean squares error matrix, rather than mean squares error. Then the confidence levels between ridge estimator and OLS are compared under the condition of OLS fixed sym-metric confidence interval, rather than the criteria for evaluating the validity of different unbiased estimators. We conclude that the confidence level of ridge estimator can not be directly compared with that of OLS based on the criteria available for unbiased estimators, which is verified by a simulation and a laboratory scale experiment on a single parameter measurement.  相似文献   

8.
Abstract. The topic of serial correlation in regression models has attracted a great deal of research in the last 50 years. Most of these studies have assumed that the structure of the error covariance matrix Ω was known or could be consistently estimated from the data. In this article, we describe a new procedure for generating forecasts for regression models with serial correlation based on ordinary least squares and on an approximate representation of the form of the autocorrelation. We prove that the predictors from this specification are asymtotically efficient under some regularity conditions. In addition, we show that there is not much to be gained in trying to identify the correct form of the serial correlation since efficient forecasts can be generated using autoregressive approximations of the autocorrelation. A large simulation study is also used to compare the finite sample predictive efficiencies of this new estimator vis‐à‐vis estimators based on ordinary least squares and generalized least squares.  相似文献   

9.
This paper considers the problem of sequential point estimation of the drifting parameter mean in the first order autoregression process. The truncated sequential procedure proposed here is based on the least squares estimator and is shown to ensure the preassigned mean square accuracy of the estimates. The uniform in parameter asymptotic normality of the sequential estimator is established.  相似文献   

10.
When a straight line is fitted to time series data, generalized least squares (GLS) estimators of the trend slope and intercept are attractive as they are unbiased and of minimum variance. However, computing GLS estimators is laborious as their form depends on the autocovariances of the regression errors. On the other hand, ordinary least squares (OLS) estimators are easy to compute and do not involve the error autocovariance structure. It has been known for 50 years that OLS and GLS estimators have the same asymptotic variance when the errors are second‐order stationary. Hence, little precision is gained by using GLS estimators in stationary error settings. This article revisits this classical issue, deriving explicit expressions for the GLS estimators and their variances when the regression errors are drawn from an autoregressive process. These expressions are used to show that OLS methods are even more efficient than previously thought. Specifically, we show that the convergence rate of variance differences is one polynomial degree higher than that of least squares estimator variances. We also refine Grenander's (1954) variance ratio. An example is presented where our new rates cannot be improved upon. Simulations show that the results change little when the autoregressive parameters are estimated.  相似文献   

11.
Abstract. The simultaneous switching autoregressive (SSAR) model proposed by Kunitomo and Sato (A non-linearity in economic time series and disequilibrium econometric models. In Theory and Application of Mathematical Statistics (ed. A. Takemura). Tokyo:University of Tokyo Press (in Japanese), 1994; Asymmetry in economic time series and simultaneous switching autoregressive model. Struct. Change Econ. Dyn. , forthcoming (1994).) is a Markovian non-linear time series model. We investigate the finite sample as well as the asymptotic properties of the least squares estimator and the maximum likelihood (ML) estimator. Due to a specific simultaneity involved in the SSAR model, the least squares estimator is badly biased. However, the ML estimator under the assumption of Gaussian disturbances gives reasonable estimates.  相似文献   

12.
We approach the problem of non‐parametric estimation for autoregressive Markov switching processes. In this context, the Nadaraya–Watson‐type regression functions estimator is interpreted as a solution of a local weighted least‐square problem, which does not admit a closed‐form solution in the case of hidden Markov switching. We introduce a non‐parametric recursive algorithm to approximate the estimator. Our algorithm restores the missing data by means of a Monte Carlo step and estimates the regression function via a Robbins–Monro step. We prove that non‐parametric autoregressive models with Markov switching are identifiable when the hidden Markov process has a finite state space. Consistency of the estimator is proved using the strong α‐mixing property of the model. Finally, we present some simulations illustrating the performances of our non‐parametric estimation procedure.  相似文献   

13.
Most studies on residence time distribution (RTD) have focused on the tail of the RTD curve, and very little attention has been paid to the effect of white noise on the measured results. The aim of this work is to study the effect of white noise on the calculated parameters with different data processing methods. The anti‐disturbance abilities of the moment method and the least squares method are compared. The results show that the anti‐disturbance ability of the least squares method was better than that of the moment method. As a result of peak overlapping in the RTD curve of a loop reactor, the moment method cannot be used to calculate the fluid velocity and dispersion coefficient. Experiments show that the least squares method is still applicable in a loop reactor.  相似文献   

14.
Abstract. In this paper we have derived the large sample asymptotic approximation for the variance-covariance matrix of the two stage Prais-Winston estimator of the regression coefficients. The efficiency properties of this estimator with respect to ordinary least squares, and generalized least squares with a known autocorrelation coefficient are then analysed numerically. The results are useful for the practitioners dealing with moderate size sample data.  相似文献   

15.
Color correction involves mapping device RGBs to display counterparts or to corresponding XYZs. A popular methodology is to take an image of a color chart and then solve for the best 3 × 3 matrix that maps the RGBs to the corresponding known XYZs. However, this approach fails at times when the intensity of the light varies across the chart. This variation needs to be removed before estimating the correction matrix. This is typically achieved by acquiring an image of a uniform gray chart in the same location, and then dividing the color checker image by the gray‐chart image. Of course, taking images of two charts doubles the complexity of color correction. In this article, we present an alternative color correction algorithm that simultaneously estimates the intensity variation and the 3 × 3 transformation matrix from a single image of a color chart. We show that the color correction problem, that is, finding the 3 × 3 correction matrix, can be solved using a simple alternating least‐squares procedure. Experiments validate our approach. © 2014 Wiley Periodicals, Inc. Col Res Appl, 40, 232–242, 2015  相似文献   

16.
A new iterative solution to the statistical adjustment of constrained data sets is derived in this paper. The method is general and may be applied to any weighted least squares problem containing nonlinear equality constraints. Other methods are available to solve this class of problem, but are complicated when unmeasured variables and model parameters are not all observable and the model constraints are not all independent. Of notable exception, however, are the methods of Crowe (1986) and Pai and Fisher (1988), although these implementations require the determination of a matrix projection at each iteration which may be computationally expensive. An alternative solution which makes the pragmatic assumption that the unmeasured variables and model parameters are known with a finite but equal uncertainty is proposed. We then re-formulate the well known data reconciliation solution in the absence of these unknowns to arrive at our new solution; hence the regularization approach. Another procedure for the classification of observable and redundant variables which does not require the explicit computation of the matrix projection is also given. The new algorithm is demonstrated using three illustrative examples previously used in other studies.  相似文献   

17.
The effects of selected factors such as vapor‐grown carbon nanofiber (VGCNF) weight fraction, applied stress, and temperature on the viscoelastic responses (creep strain and creep compliance) of VGCNF/vinyl ester (VE) nanocomposites were studied using a central composite design (CCD). Nanocomposite test articles were fabricated by high‐shear mixing, casting, curing, and post curing in an open‐face mold under a nitrogen environment. Short‐term creep/creep recovery experiments were conducted at prescribed combinations of temperature (23.8–69.2°C), applied stress (30.2–49.8 MPa), and VGCNF weight fraction (0.00–1.00 parts of VGCNF per hundred parts of resin) determined from the CCD. Response surface models (RSMs) for predicting these viscoelastic responses were developed using the least squares method and an analysis of variance procedure. The response surface estimates indicate that increasing the VGCNF weight fraction marginally increases the creep resistance of the VGCNF/VE nanocomposite at low temperatures (i.e., 23.8–46.5°C). However, increasing the VGCNF weight fraction decreased the creep resistance of these nanocomposites for temperatures greater than 50°C. The latter response may be due to a decrease in the nanofiber‐to‐matrix adhesion as the temperature is increased. The RSMs for creep strain and creep compliance revealed the interactions between the VGCNF weight fraction, stress, and temperature on the creep behavior of thermoset polymer nanocomposites. The design of experiments approach is useful in revealing interactions between selected factors, and thus can facilitate the development of more physics‐based models. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42162.  相似文献   

18.
Abstract. For an AR(1) model having a unit root with nonconsecutively observed or missing data we consider the ordinary least squares estimator, the one-step Newton-Raphson estimator and an ordinary least squares type estimator which is a simple approximation of the Newton-Raphson estimator. It is shown that the limiting distributions of these estimators of the unit root are the same as those of the regression estimators as tabulated by Dickey and Fuller (Distribution of the estimators for autoregressive time series with a unit root. J. Am. Statist. Assoc. 74 (1979), 427–31) for the complete data situation. Simulation results show that our proposed unit root tests perform very well for small samples.  相似文献   

19.
The predictive ability of soft sensors, which estimate values of an objective variable y online, decreases due to process changes in chemical plants. To reduce the decrease of predictive ability, adaptive soft sensors have been developed. We focused on just‐in‐time soft sensors, especially locally weighted partial least squares (LWPLS) regression. Since a set of hyperparameters in an LWPLS model has to be set beforehand and there is only onedataset, a traditional LWPLS model is difficult to accurately predict y‐values in multiple process states. In this study, we propose to combine LWPLS and ensemble learning, and predict y‐values with multiple LWPLS models, whose datasets and sets of hyperparameters are different. The weights of LWPLS models are determined based on Bayes’ theorem, considering their predictive ability. We confirmed that the proposed model has higher predictive accuracy than traditional models through numerical simulation data and two industrial data analyses. © 2015 American Institute of Chemical Engineers AIChE J, 62: 717–725, 2016  相似文献   

20.
We address the problem of estimating the autocovariance matrix of a stationary process. Under short range dependence assumptions, convergence rates are established for a gradually tapered version of the sample autocovariance matrix and for its inverse. The proposed estimator is formed by leaving the main diagonals of the sample autocovariance matrix intact while gradually down‐weighting off‐diagonal entries towards zero. In addition, we show the same convergence rates hold for a positive definite version of the estimator, and we introduce a new approach for selecting the banding parameter. The new matrix estimator is shown to perform well theoretically and in simulation studies. As an application, we introduce a new resampling scheme for stationary processes termed the linear process bootstrap (LPB). The LPB is shown to be asymptotically valid for the sample mean and related statistics. The effectiveness of the proposed methods are demonstrated in a simulation study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号