首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Over the last decade, utilization of biomasses is highly encouraged to conserve scarce resources, reduce dependency on energy imports as well as protect the environment. Integrated biorefinery emerged as noteworthy concept to integrate several conversion technologies to have more flexibility in product generation with energy self‐sustained and reduce the overall cost of the process. Integrated biorefinery is a processing facility that converts biomass feedstocks into a wide range of value added products via multiple technologies. In this work, a systematic approach for the synthesis and optimization of a sustainable integrated biorefinery which considers economic, environmental, inherent safety, and inherent occupational health performances is presented. Fuzzy optimization approach is adapted to solve four parameters simultaneously as they are often conflicting in process synthesis and optimization of an integrated biorefinery. An integrated palm oil‐based biorefinery case study is solved to demonstrate the proposed approach. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4212–4227, 2013  相似文献   

2.
Biomass is a sustainable source of energy which can be utilised to produce value-added products such as biochemical products and biomaterials. In order to produce a sustainable supply of such value-added products, an integrated biorefinery is required. An integrated biorefinery is a processing facility that integrates multiple biomass conversion pathways to produce value-added products. To date, various biomass conversion pathways are available to convert biomass into a wide range of products. Due to the large number of available pathways, various systematic screening tools have been developed to address the process design aspect of an integrated biorefinery. Process design however, is often inter-linked with product design as it is important to identify the optimal molecule (based on desired product properties) prior to designing its optimal production routes. In cases where the desired product properties cannot be met by a single component chemical product, a mixture of chemicals would be required. In this respect, product and process design decisions would be a challenging task for an integrated biorefinery. In this work, a novel two-stage optimisation approach is developed to identify the optimal conversion pathways in an integrated biorefinery to convert biomass into the optimal mixtures in terms of target product properties. In the first stage, the optimal mixture is designed via computer-aided molecular design (CAMD) technique. CAMD technique is a reverse engineering approach which predicts the molecules with optimal properties using property prediction models. Different classes of property models such as group contribution (GC) models and quantitative structure property relationship (QSPR) are adapted in this work. The main component of the mixture is first determined from the target product properties. This is followed by the identifying of additive components to form an optimal mixture with the main component based on the desired product properties. Once the optimal mixture is determined, the second stage identifies the optimal conversion pathways via superstructural mathematical optimisation approach. With such approach, the optimal conversion pathways can be determined based on different optimisation objectives (e.g. highest product yield, lowest environmental impact etc.). To illustrate the proposed methodology, a case study on the design of fuel additives as a mixture of different molecules from palm-based biomass is presented. With the developed methodology, optimal fuel additives are designed based on optimal target properties. Once the optimal fuel additives are designed, the optimal conversion pathways in terms of highest product yield and economic performance that convert biomass into the optimal fuel additives are identified.  相似文献   

3.
覃伟中  李强  朱兵  陈丙珍 《化工学报》2010,61(7):1653-1658
生物炼制是与石油炼制互补的新型工业生产模式,对我国生物质能源发展有重要作用。我国生物炼制产业发展目前处于起步阶段,面临着原料、技术等问题。针对我国国情,提出了在条件适当地区,生物炼制企业建设采取生物炼制与石油炼制一体化建设的设想。以燃料乙醇项目建设为例,通过对单独建设和一体化建设两种方案的比较,从成本、未来发展和原料供应等方面分析了一体化建设的优势。研究表明生物炼制与石油炼制一体化模式将对我国能源、化工等行业的可持续性发展起到促进作用。  相似文献   

4.
Recently, there has been a growing interest in the development of cost‐effective technologies for the production of biofuels. A common approach to biofuel research is to invent or improve a biochemical or thermochemical conversion step. Subsequently, other conversion and separation steps are added to form a complete biorefinery flowsheet. Because this approach is structured around a specific conversion step, it may limit the possibilities of configuring optimal and innovative biorefineries. This article proposes a novel and systematic two‐stage approach to the synthesis and optimization of biorefinery configurations, given available feedstocks and desired products. In the synthesis stage, a systems‐based approach is developed to create a methodical way for synthesizing integrated biorefineries. This method is referred to as “forward‐backward” approach. It involves forward synthesis of biomass to possible intermediates and reverse synthesis starting with the desired products and identifying necessary species and pathways leading to them. In the optimization stage, Bellman's principle of optimality is applied to decompose the optimization problem into subproblems in which an optimal policy of available technologies is determined for every conversion step. An optimization formulation is utilized to determine the optimal configuration based on screening and connecting the optimal policies and generating the biorefinery flowsheet. A case study of alcohol‐producing pathways from lignocellulosic biomass is solved to demonstrate the merits of the proposed approach. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

5.
Nowadays, there is a tremendous global interest in the biofuels production. However, first generation biofuels have been debated about that energy-crop compete with food crops and thus cause food deficiency and price increases. In this sense, researchers have started looking for potential feedstock for ethanol such as lignocellulosic biomass (e.g., sugarcane bagasse), which does not affect food security. In this paper, the integrated use of sugarcane bagasse is analyzed as raw material for second generation of biofuels production. This case study implements a design and process integration to compare several biorefinery topologies using the typical mass flow rate of residual biomass produced by the sugar industry (1200 ton per day). Based on evaluation of chemical composition of bagasse (cellulose, hemicellulose, and lignin) several process schemes for integral utilization of biomass were proposed. This paper is the first part of the study on the exergy, life cycle analysis (LCA) and economic analysis of sugarcane bagasse for sustainable biofuels production using Aspen Plus™ software. Part 1 presents the exergy and life cycle analysis developed while part 2 describes economic analysis and selection of an optimal configuration with minimal environmental impact, by means of the combined use of raw material and energy integration.  相似文献   

6.
Depletion of fossil fuels and increasing public awareness of environmental issues has stimulated the search for alternative energy sources. Biofuels are recognised as one of the most promising alternatives to fossil fuels, as they can be produced from various types of feedstock. The efficiency and sustainability of biomass-based production can be maximised by producing biofuels along with other valuable coproducts in a “biorefinery”. This concept was proposed to make the production of biofuels and biochemicals more economically viable by taking advantage of opportunities for process integration and waste recovery. In this work, a novel hybrid optimisation model that combines superstructure-based optimisation approach and insight-based automated targeting for the synthesis of a sustainable integrated biorefinery is presented. In addition, fuzzy optimisation is also adapted to synthesize such integrated facility with the simultaneous consideration of both economic and environmental performance. Note that the proposed approach is a generic synthesis strategy that can be applied even without detailed modelling of individual processes.  相似文献   

7.
To support and move toward a sustainable bioeconomy, the production of polyhydroxyalkanoates (PHAs) using renewable biomass has acquired more attention. However, expensive biomass pretreatment and low yield of PHAs pose significant disadvantages in its large-scale production. To overcome such limitations, the most recent advances in metabolic engineering strategies used to develop high-performance strains that are leading to a new manufacturing concept converting biomass to PHAs with co-products such as amino acids, proteins, biohydrogen, biosurfactants, and various fine chemicals are critically summarized. This review article presents a comprehensive roadmap that highlights the integrated biorefinery strategies, lifecycle analysis, and techno-economic assessment for sustainable and economic PHAs production. Finally, current and future challenges that must be addressed to transfer this technology to real-world applications are reviewed.  相似文献   

8.
A systematic approach for heat integration into an eco‐industrial park through an integrated trigeneration system is presented. The approach is based on a new superstructure formulated as a multiobjective mixed‐integer nonlinear programming model, where intraplant and interplant heat exchange for the process streams is allowed, in addition to the energy integration into the utility system that is constituted by a steam Rankine cycle (to produce electric power and hot utility), an organic Rankine cycle (to recover waste heat and produce electric power), and an absorption refrigeration cycle (to recover waste heat and provide refrigeration). To run the utility system, several external heat sources (solar, fossil fuels, and biofuels) are considered, which impact the economic, environmental, and social objectives considered in the model. A systematic approach to tradeoff the objectives considered is presented. Two examples are presented, where the advantages of the integrated eco‐industrial park are shown. © 2013 American Institute of Chemical Engineers AIChE J, 60: 213–236, 2014  相似文献   

9.
A new approach for the incorporation of safety criteria into the selection, location, and sizing of a biorefinery is introduced. In addition to the techno‐economic factors, risk metrics are used in the decision‐making process by considering the cumulative risk associated with key stages of the life cycle of a biorefinery that includes biomass storage and transportation, process conversion into biofuels or bioproducts, and product storage. The fixed cost of the process along with the operating costs for transportation and processing as well as the value of the product are included. An optimization formulation is developed based on a superstructure that embeds potential supply chains of interest. The optimization program establishes the tradeoffs between cost and safety issues in the form of Pareto curves. A case study on bio‐hydrogen production is solved to illustrate the merits of the proposed approach. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2427–2434, 2013  相似文献   

10.
Sustainable polymers derived from biomass have great potential to replace petrochemical based polymers and fulfill the ever‐increasing market demand. To facilitate their industrialization, in this research, a comprehensive superstructure reaction network comprising a large number of reaction pathways from biomass to both commercialized and newly proposed polymers is constructed. To consider economic performance and environmental impact simultaneously, both process profit and green chemistry metrics are embedded into the multiobjective optimization framework, and MINLP is used to enable the effective selection of promising biopolymer candidates. Through this proposed approach, this study identifies the best biopolymer candidates and their most profitable and environmentally friendly synthesis routes under different scenarios. Moreover, the stability of optimization results regarding the price of raw materials and polymers and the effect of process scale on the investment cost are discussed in detail. These results, therefore, pave the way for future research on the production of sustainable biopolymers. © 2017 American Institute of Chemical Engineers AIChE J, 63: 91–103, 2018  相似文献   

11.
The integrated biorefinery has the opportunity to provide a strong, self-dependent, sustainable alternative for the production of bulk and fine chemicals, e.g. polymers, fiber composites and pharmaceuticals as well as energy, liquid fuels and hydrogen. Although most of the fundamental processing steps involved in biorefining are well-known, there is a need for a methodology capable of evaluating the integrated processes in order to identify the optimal set of products and the best route for producing them. The complexity of the product allocation problem for such processing facilities demands a process systems engineering approach utilizing process integration and mathematical optimization techniques to ensure a targeted approach and serve as an interface between simulation work and experimental efforts. The objective of this work is to assist the bioprocessing industries in evaluating the profitability of different possible production routes and product portfolios while maximizing stakeholder value through global optimization of the supply chain. To meet these ends, a mathematical optimization based framework is being developed, which enables the inclusion of profitability measures and other techno-economic metrics along with process insights obtained from experimental as well as modeling and simulation studies.  相似文献   

12.
With growing interest in the biomass value chain, a multitude of reactions are proposed in literature for the conversion of biomass into a variety of biofuels. In the early design stage, data for a detailed design is scarce rendering an in‐depth analysis of all possibilities challenging. In this contribution, the screening methodology process network flux analysis (PNFA) is introduced assessing systematically the cost and energy performance of processing pathways. Based on the limited data available, a ranking of biorefinery pathways and a detection of bottlenecks is achieved by considering the reaction performance as well as the feasibility and energy demand of various separation strategies using thermodynamic sound shortcut models. PNFA is applied to a network of six gasoline biofuels from lignocellulosic biomass. While 2‐butanol is ruled out due to a lack in yield and selectivity, iso‐butanol and 2‐butanone are identified as economically promising fuels beyond ethanol. : Process Systems Engineering. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3096–3108, 2016  相似文献   

13.
The selection of product portfolios, processing routes and the combination of technologies to obtain a sustainable biorefinery design according to economic and environmental criteria represents a challenge to process engineering. The aim of this research is to generate a robust methodology that assists process engineers to conceptually optimise the environmental and economic performances of biorefinery systems. A novel economic value and environmental impact (EVEI) analysis methodology is presented in this paper. The EVEI analysis is a tool that emerges from the combination of the value analysis method for the evaluation of economic potential with environmental footprinting for impact analysis. The methodology has been effectively demonstrated by providing insights into the performance of a bioethanol plant as a case study. The systematisation of the methodology allowed its implementation and integration into a computer-aided process engineering (CAPE) tool in the spreadsheet environment.  相似文献   

14.
Lignocellulosic biomass is renewable and one of the most abundant sources for the production of high-value chemicals, materials, and fuels. It is of immense importance to develop new efficient technologies for the industrial production of chemicals by utilizing renewable resources. Lignocellulosic biomass can potentially replace fossil-based chemistries. The production of fuel and chemicals from lignin powered by renewable electricity under ambient temperatures and pressures enables a more sustainable way to obtain high-value chemicals. More specifically, in a sustainable biorefinery, it is essential to valorize lignin to enhance biomass transformation technology and increase the overall economy of the process. Strategies regarding electrocatalytic approaches as a way to valorize or depolymerize lignin have attracted significant interest from growing scientific communities over the recent decades. This review presents a comprehensive overview of the electrocatalytic methods for depolymerization of lignocellulosic biomass with an emphasis on untargeted depolymerization as well as the selective and targeted mild synthesis of high-value chemicals. Electrocatalytic cleavage of model compounds and further electrochemical upgrading of bio-oils are discussed. Finally, some insights into current challenges and limitations associated with this approach are also summarized.  相似文献   

15.
The vision of a circular economy with closed carbon dioxide cycles is inevitably connected to a change of raw materials. Non‐edible biomass is an attractive carbon source for chemical industry. Brought together with renewable energy, the electrocatalytic transformation of biomass‐based feedstocks enables to directly integrate renewable electrical energy into chemical value chains. Considering the major role of natural carboxylic acids, the well‐known Kolbe and non‐Kolbe electrolysis attract increasing interest as versatile tools to valorize renewable feedstocks providing access to both biofuels and bulk or fine chemicals. They allow via decarboxylation access either to the corresponding dimerization product or the terminal alkene. Here, the electrochemical valorization of biomass is discussed with special emphasis on the possible role of (non‐)Kolbe electrolysis in a future electrified biorefinery.  相似文献   

16.
A systematic approach for development of a reliable optimization framework to address the optimal design of integrated biorefineries in the face of uncertainty is presented. In the current formulation, a distributed strategy which is composed of different layers including strategic optimization, risk management, detailed mechanistic modeling, and operational level optimization is applied. In the strategic model, a multiobjective stochastic optimization approach is utilized to incorporate the tradeoffs between the cost and the financial risk. Then, Aspen Plus models are built to provide detailed simulation of biorefineries. In the final layer, an evolutionary algorithm is employed to optimize the operating condition. To demonstrate the effectiveness of the framework, a hypothetical case study referring to a multiproduct lignocellulosic biorefinery is utilized. The numerical results reveal the efficacy of the proposed approach; it provides decision makers with a quantitative analysis to determine the optimum capacity plan and operating conditions of the biorefinery. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3208–3222, 2015  相似文献   

17.
The biorefinery concept offers a promising solution to transform the struggling forestry industry. Not only will the implementation of new products and processes help to diversify revenues, it will also offer an opportunity to change the manufacturing culture by better managing the flexibility of assets to react to volatile market conditions. In this paper, an integrated supply-chain planning framework is presented. It is based on optimizing a superstructure to help decision makers identify different supply-chain policies to adapt to different market conditions. It integrates revenue management concepts, activity-based cost accounting principles, manufacturing flexibility and supply-chain flexibility in a tactical model to maximize profit in a price-volatile environment. A case study of a newsprint mill implementing a parallel biomass fractionation line producing several biochemicals is used to illustrate this approach. Results and benefits are presented for the traditional pulp and paper business and for the transformed biorefinery in different market scenarios.  相似文献   

18.
The design of sustainable supply chains, which recently emerged as an active area of research in process systems engineering, is vital to ensure sustainable development. Despite past and ongoing efforts, the available methods often overlook impacts beyond climate change or incorporate them via standard life cycle assessment metrics that are hard to interpret from an absolute sustainability viewpoint. We here address the design of biomass supply chains considering critical ecological limits of the Earth—planetary boundaries—which should never be surpassed by anthropogenic activities. Our method relies on a mixed-integer linear program that incorporates a planetary boundaries-based damage model to quantify absolute sustainability precisely. We apply this approach to the sugarcane-to-ethanol industry in Argentina, identifying the optimal combination of technologies and network layout that minimize the impact on these ecological boundaries. Our framework can find applications in a wide range of supply chain problems related to chemicals and fuels production, energy systems, and agriculture planning.  相似文献   

19.
Because plastics contribute to healthy and sound everyday life, global usage volume of plastic is expected to increase. However, the chemical industry is facing challenges in plastics from the viewpoints of resource depletion and environmental burden. These trends have led to discussions on how plastics should move forward in a sustainable society and a circular economy considering resource conversion, efficient after‐use utilization, and environmental protection. Bioplastics, both bio‐based and biodegradable, have reemerged as potential solutions. To clarify the role of bio‐based, biodegradable, and fossil‐based plastics, it is meaningful to assess lessons learned from experiences in the 1990s and 2000s. Although industries have been delivering solutions through the provision of materials, a coordinated and innovative approach throughout the value chain is necessary to achieve an integrated business model that incorporates efficient resource utilization, applications, and after‐use utilization, including chemical recycling, mechanical recycling, and energy/thermal recovery.  相似文献   

20.
Gasification of microalgae feedstock generates mineral ash. In this work, raw ash is produced from lipid‐extracted algal biomass of the Nannochloropsis salina strain. Prior to using it as filler for composite fabrication with poly(vinyl alcohol), raw ash (RASH) is activated with NaOH and surface modified with (3‐aminopropyl)triethoxysilane. Surface modification of activated ash (PASH) significantly improves interfacial interaction between surface‐modified ash (GASH) and polymer matrix. Higher ultimate tensile strength of PVA/GASH composites is recorded, compared with PVA/RASH and PVA/PASH. Young's modulus of biocomposites appears to increase proportionally to loading of the fillers. Thermal properties of polymeric materials of PVA with these ashes are stable. This is the first report to demonstrate the utilization of microalgal ash, the leftover after completed gasification of algal biomass, as an efficient filler for production of value‐added polymeric materials. It is proposed that microalgal ash is capable of improving the economic feasibility of microalgae‐based biorefinery. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43599.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号