首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aqueous ammonia can act as an alternative absorbent for CO2 removal, but it has high volatility and reduces the ammonia concentration. We analyzed the hydroxyl additives 2-amino-2-methyl-1-propanol (AMP), ethylene glycol, and glycerol to reduce the vapor pressure of ammonia solutions. In addition, absorption efficiency groups of aqueous ammonia solutions containing hydroxyl additives were investigated. The results show that the addition of AMP, ethylene glycol, or glycerol to NH3 reduced the vapor pressure of the absorbent by 14.0%, 22.7%, and 75.2%, respectively. The reaction rate constants of aqueous NH3 containing AMP, ethylene glycol, and glycerol additives at 293, 303, 313 and 323 K are given by $k_{2,NH_3 /AMP} = 4.565 \times 10^5 \exp ( - 1396.5/T)$ , $k_{2,NH_3 /ehylene glycol} = 1.499 \times 10^6 \exp ( - 1978.7/T)$ and $k_{2,NH_3 /glycerol} = 7.078 \times 10^6 \exp ( - 2413.3/T)$ , respectively.  相似文献   

2.
Ammonia is rapidly and reversibly absorbed on magnesium chloride supported on alumina. The absorption at ambient temperature is twice that on alumina alone, but much of the ammonia is still captured at 400°C, closer to the temperature of ammonia synthesis. Regeneration at 450°C is complete in 30 min; partial regeneration is faster, and is correlated with the temperature and the regeneration time. The supported absorbent column works for many cycles, reproducibly, because submicron‐sized MgCl2 crystals are trapped in similarly sized pores in the alumina itself, and the confinement prevents deterioration of the microstructure during absorption or regeneration. In contrast, while ammonia absorption into pure magnesium chloride is potentially much larger at equilibrium, the ammonia absorbs very slowly, and the chloride loses available capacity with use, probably because of fusing and deterioration of microstructure. A simplified model was constructed to simulate ammonia absorption into pure magnesium chloride and alumina‐supported magnesium chloride. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3058–3068, 2017  相似文献   

3.
Aqueous ammonia has been proposed as an absorbent for use in CO2 post combustion capture applications. It has a number of advantages over MEA such as high absorption capacity, low energy requirements for CO2 regeneration and resistance to oxidative and thermal degradation. However, due to its small molecular weight and large vapour pressure absorption must be carried at low temperature to minimise ammonia loss. In this work the rate of CO2 absorption into a falling thin film has been measured using a wetted-wall column for aqueous ammonia between 0.6 and 6 mol L?1, 278–293 K and 0–0.8 liquid CO2 loading. The results were compared to 5 mol L?1 MEA at 303 and 313 K. It was found that the overall mass transfer coefficient for aqueous ammonia was at least 1.5–2 times smaller than MEA at the measured temperatures. From determination of the second-order reaction rate constant k2 (915 L mol?1 s?1 at 283 K) and activation energy Ea (61 kJ mol?1) it was shown that the difference in mass transfer rate is likely due to both the reduced temperature and differences in reactivity between ammonia and MEA with CO2.  相似文献   

4.
A process of simultaneous desulfurization and denitrification of flue gas was conducted in this study. The flue gas containing 200 mg·m−3 NO, 1000–4000 mg·m−3 SO2, 3%–9% O2, and 10%–20% CO2 was first oxidized by O3 and then absorbed by ammonia in a bubbling reactor. Increasing the ammonia concentration or the SO2 content in flue gas can promote the absorption of NOX and extend the effective absorption time. On the contrary, both increasing the absorbent temperature or the O2 content shorten the effective absorption time of NOX. The change of solution pH had substantial influence on NOX absorption. In the presence of CO2, the NOX removal efficiency reached 89.2% when the absorbent temperature was raised to 60 °C, and the effective absorption time can be maintained for 8 h, which attribute to the buffering effect in the absorbent. Besides, both the addition of Na2S2O3 and urea can promote the NOX removal efficiency when the absorbent temperature is 25 °C, and the addition of Na2S2O3 had achieved better results. The advantage of adding Na2S2O3 became less evident at higher absorbent temperature and coexistence of CO2. In all experiments, SO2 removal efficiency was always above 99%, and it was basically not affected by the above factors.  相似文献   

5.
The use of ethanol as a fuel for motor engines has attracted significant attention because of its possible environmental and economic advantages over fossil fuel. However, the energy demand for the ethanol dehydration process significantly impacts its production cost. A new and energy efficient process is developed on the basis of salt extractive distillation, which uses recycled MgCl2 granules as a separating agent. Vapor‐liquor‐equilibria (VLE) data for the ternary MgCl2 + ethanol + water system, and the three constituent binary systems were measured at 30, 60, 90, and 101.3 kPa. A large enhancement of relative volatility of the ethanol + water system in the presence of MgCl2 is observed throughout the entire ethanol concentration range, which completely broke the azeotrope. The salt effect of MgCl2 is thought to be the result of energetic interactions and the hydration equilibrium reaction of the Mg2+ ion with water molecules. The calculation results by the mixed‐solvent electrolyte model embedded in the OLI platform equipped with new model interaction parameters and equilibrium constant (obtained via the regression of experimental VLE data), provided for a satisfactory means of simulating the MgCl2 salt extractive distillation process. Finally, the process was proven feasible at the laboratory‐scale resulting in large granules of recovered MgCl2 and a product of 99.5 wt % ethanol. © 2014 American Institute of Chemical Engineers AIChE J, 61: 664–676, 2015  相似文献   

6.
The microstructure of the isotactic polypropylene obtained with various MgCl2‐supported catalyst systems at high polymerization temperature of 70–100°C is investigated by discussing the intrinsic relation between the different types of active centers and the polymerization temperatures via gel permeation chromatography, temperature rising elution fractionation, and 13C NMR. For the MgCl2/TiCl4/di‐n‐butyl phathalate‐AlEt3/external donor and MgCl2/TiCl4/2,2‐diisobutyl‐1,3‐dimethoxypropane‐AlEt3 catalyst systems, the differences in the isotactic productivity of polymers obtained at different polymerization temperatures mainly result from the variation of both the activity of the different isospecific active centers and the stability constants of the complex of catalyst/donor. The reaction rate of high isotactic active centers reaches maximum at 85–90°C, and this effect contributes to both the highest isotacticity and the narrowest molecular weight distribution. For the MgCl2/TiCl4/phthalate ester‐AlEt3 catalyst system, the isotacticity of polypropylene remains approximately constant in the temperature range of experiments, which could be ascribed to elution of phthalate ester after the activation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42487.  相似文献   

7.
《分离科学与技术》2012,47(15):2445-2466
Abstract

In this paper an extended analysis on a hollow-fiber membrane absorber is conducted for CO2 removal from flue gases. A rigorous model of gas–liquid mass transfer is developed on both narrow channels in and around the hollow fibers, including the gas absorption occurring from the reaction between CO2 and aqueous K2CO3 absorbent. CO2 concentration profiles can be obtained regardless of the placement of the flowing absorbent. Experimental observations of the CO2 concentration in both the reject and permeate outlets compared with theoretical prediction allow us to understand the influence of flow rates of feed gas as well as absorbent on CO2 absorption. For the flowing K2CO3 absorbent a kinetic constant can be chosen which will provide the best possible agreement between experiment and reactive model prediction. This fact emphasizes that the pseudofirst-order kinetic can be employed to describe the facilitation effect. The overall mass transfer coefficients were determined from the experimentally observed concentration changes. The CO2 permeation flux was found to be enhanced as the K2CO3 concentration was increased, suggesting that CO2 removal is entirely controlled by the reaction. The enhanced selectivity factor for CO2/N2, which decreases with increasing absorbent flow rate, reached as high as 1200 with 15 wt% K2CO3 absorbent.  相似文献   

8.
《分离科学与技术》2012,47(4):766-777
Abstract

Aqueous ammonia was investigated as a new absorbent of the chemical absorption process for CO2 capture from combustion flue gas. The effects of the temperature and concentration of aqueous ammonia on CO2 absorption in a semi‐batch reactor were studied by interpreting breakthrough curves. Raman spectroscopy analysis of CO2 loaded aqueous ammonia provided concentration changes of bicarbonate, carbonate, and carbamate as well as CO2 sorption capacity at given time during the absorption with 13 wt% aqueous ammonia at 25°C. It was observed that carbamate formation was dominating at the early stage of absorption. Then, the bicarbonate formation took over the domination at the later stage while the carbonate remained unchanged.  相似文献   

9.
《分离科学与技术》2012,47(1-3):781-792
Abstract

The absorption spectrum of UOCl2 in molten KCl-MgCl2 salts has been measured and compared with that of the related UCl4 spectrum at temperatures up to 932°C and melt compositions of 60–40, 34–66, and 0–100 mol %, respectively, KCl-MgCl2. The species UOCl2 is an important intermediate in the conversion of UO2 to UCl4 and its spectrum provides a means of monitoring the reaction, and other similar reactions, in situ. The solubility of UOCl2 has been determined from absorption spectra and has been found to be 10 to 25 times higher than reported earlier with mole fractions as high as 0.0019 in pure MgCl2 at 932°C.  相似文献   

10.
The objective of this work is to prepare absorbent materials based on polydimethylsiloxane (PDMS) for the absorption of organic solvents by a relative simple method, with large absorption capacities and reusability. Different particles (ZnO, MgSO4, ZnCl2, and NaHCO3) were first incorporated in PDMS and then removed by immersion in HCl (c) or water. The absorbent materials were characterized by TGA, mercury porosimetry, stress–strain curves, SEM, EDS, XPS, FTIR, and water contact angle. The materials can absorb polar organic chlorinated solvents (carbon tetrachloride, dichloroethene, dichloromethane, and chloroform) more than four times its own weight. Other solvents were also tested showing 2–3 times its own weight. Additionally, these materials show demulsification properties and absorption of oleophilic compounds. The reusability of the material makes them good candidates for remediation of polluted water.  相似文献   

11.
To improve the overall sustainability of MgO‐based refractory production, a novel process to produce high purity MgO from calcined low‐grade magnesite in ammonium chloride solution was developed. The process was designed on the basis of the phase equilibria of the NH4Cl‐MgCl2‐NH3‐H2O system obtained using the Mixed Solvent Electrolyte model embedded in OLI software. The optimum calcination temperature of low‐grade magnesite was determined to be 650°C in terms of the conversion ratio of magnesium and calcium in the leaching experiments. An apparent activation energy of Mg extraction was 30.98 kJ/mol, which is slightly lower than that of Ca leaching. An empirical kinetic model of magnesium extraction was also developed to describe the effects of NH4Cl concentration, particle size of calcined magnesite, and solid‐to‐liquid ratio on the extent of extraction of magnesium. At leaching time of 10 min, the leachate with high Mg/Ca molar ratio was obtained. Then, MgO with a purity of 99.09% was produced through the decomposition of intermediate 4MgCO3·Mg(OH)2·4H2O. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1933–1946, 2015  相似文献   

12.
A new concept for ammonia removal from aqueous solution by zeolites followed by electrochemical oxidation/regeneration was studied in this work. In the first mode, (NH4)2SO4 solution is passed through an ion exchange column where ammonium is concentrated in the zeolite. During the second mode (electrochemical oxidation/regeneration), the absorbed ammonia is harmlessly removed by electrochemical oxidation in the presence of sodium chloride (NaCl) and simultaneously the zeolite is regenerated. Continuous experiments were carried out for 172 h with five loading and four regeneration cycles without finding the loss of ammonia removal capacity of the zeolite. With electrochemical oxidation/regeneration, the conversion rate of ammonia adsorbed by the zeolites into nitrogen gas was more that 98%, and the conversion rate to nitrate was less than 2%; no ammonia or nitrite was detected in the regenerated solution. The regeneration solution can be repeatedly reused over a long period of time with 2.0 g/L NaCl added to the regeneration solution, saving both water resources and the chemical reagent. Moreover, approximately five times less energy was consumed with the present method than that of the direct electrochemical oxidation of ammonia.  相似文献   

13.
The kinetics of ammonia absorption into magnesium chloride is measured as ammonia pressure change in the temperature range 170‐430°C. The actual pressure minus that at equilibrium drops quickly, with a half life of less than a minute. It varies with the square‐root of time, suggesting diffusion limited absorption. The diffusion coefficient of ammonia in solid magnesium chloride inferred from these data is on the order 10?11‐10?13 cm2/s, considerably faster than many solid‐phase diffusivities. While optical microscopy and BET surface area experiments indicate recrystallization and agglomeration of the absorbent at ammonia synthesis temperatures, the absorption rate remains high. The dependence of absorption rate on temperature, particle size and the presence of a silica support is also investigated. The results suggest both improved ammonia separation and ways to develop high‐conversion, small‐scale, multifunctional ammonia synthesis reactors. © 2012 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

14.
CO2 Capture in a Bubble‐Column Scrubber Bubble columns are widely used in industry, such as on operations of reaction, fermentation, crystallization, desorption, and absorption. They can be operated in batch, continuously, or in semi‐batch, as well as in two or three phases. With the advantages of easy operation, simple structure, high mass transfer efficiency, high absorption factor, and low energy consumption, bubble columns have attracted wide attention in the industry. In recent years, as the carbon dioxide capture, storage, and regeneration are urgent issues, CCS and CCU have been used as the key point to solve greenhouse effect. This plays a great role in CO2 capture and storage in thermal power plants, in which the CCS capture and regeneration account for 70 % of the power generation cost. How to achieve effective capture and regeneration has become a topical subject in the energy saving and carbon reduction. Among various technologies of CO2 capture, absorption is the most mature, and MEA is used most widely. Although the capture of acid gases is still dominated by filling towers, many recent studies have confirmed the advantages of bubble towers that prevail over filling towers or other appliances. Thus, bubble columns have been adopted as the absorber and MEA as the absorbent for the new attempt of CO2 capture. The operation variables include CO2 concentration, pH, temperature, air flow rate, available gas‐liquid flow rate ratio, absorption efficiency, absorption velocity, overall mass transfer coefficient, and absorption factor, which are the important parameters for the design and operation of absorber. This study adopts the Taguchi experiment design to obtain the priority of parameter type and the optimal parameters of bubble towers for CO2 capture, so as to achieve energy saving and carbon reduction. DOI: 10.1002/ceat.201400240 CO2 Capture Using Monoethanolamine in a Bubble‐Column Scrubber Pao‐Chi Chen*, Yi Xin Luo, Pao Wein Cai Chem. Eng. Technol. 2015 , 38 (2), 274–282.  相似文献   

15.
This paper deals with the preparation of magnesium chloride hydrate from a mixed salt solution containing, besides MgCl2, substantial quantities of undesired substances such as alkali metal chlorides and magnesium sulphate. Magnesium chloride extraction was done using dioxan. In particular, it was found that this salt precipitate as the ternary compound MgCl2·6H2O·C4H8O2. Reaction equilibrium is reached after 40 min. It was shown that solid phase MgCl2·6H2O·C4H8O2 conversion into MgCl2·6H2O is feasible by a drying carried out at constant temperature chosen in the range (70-110 °C). Physico-chemical properties of the final product are determined using XRD, complexometry, potentiometry, gravimetry and FAAS. Prepared MgCl2·6H2O purity is upper than 99%. Its X-ray diffractogram is impurity free.  相似文献   

16.
In this study, capture of CO2 and H2S from natural gas mixture using porous polymeric membranes has been investigated numerically to assess the capacity of a novel absorbent, di‐isopropanol amine (DIPA), in CO2 removal. Diffusion of acid gases through porous polymeric membranes was simulated by employing CFD techniques and considering a gas feed stream, a porous membrane and a reaction medium. For solving conservation equations, finite element method was applied to calculate the rate of CO2 and H2S absorption in the membrane. The type of membrane in this work is a hollow‐fiber module. According to the modeling results, a high H2S removal can be achieved by DIPA absorber. Moreover, CO2 was captured from natural gas in an efficient manner in low gas/liquid flow rates. POLYM. ENG. SCI., 55:598–603, 2015. © 2014 Society of Plastics Engineers  相似文献   

17.
The catalytic ammonia decomposition over iron and iron nitride, Fe4N, under the atmosphere of ammonia–hydrogen mixtures of different amounts of ammonia in the temperature range of 400–550 °C by means of thermogravimetry has been studied. A differential tubular reactor with mixing has been used. The ammonia concentration in the gas phase during all the process was analysed. The balance between the inlet and outlet ammonia quantity has been used to determine a degree of ammonia conversion and the values of decomposition reaction rate. The activation energy of ammonia decomposition reaction over Fe and Fe4N was found to be 68 and 143 kJ/mol, respectively.  相似文献   

18.
Gas–liquid hollow fiber membrane contactor can be a promising alternative for the CO2 absorption/stripping due to the advantages over traditional contacting devices. In this study, the structurally developed hydrophobic polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared via a wet spinning method. The membranes were characterized in terms of morphology, permeability, wetting resistance, overall porosity and mass transfer resistance. From the morphology analysis, the membranes demonstrated a thin outer finger-like layer with ultra thin skin and a thick inner sponge-like layer without skin. The characterization results indicated that the membranes possess a mean pore size of 9.6 nm with high permeability and wetting resistance and low mass transfer resistance (1.2 × 104 s/m). Physical CO2 absorption/stripping were conducted through the fabricated gas–liquid membrane contactor modules, where distilled water was used as the liquid absorbent. The liquid phase resistance was dominant due to significant change in the absorption/stripping flux with the liquid velocity. The CO2 absorption flux was approximately 10 times higher than the CO2 stripping flux at the same operating condition due to high solubility of CO2 in water as confirmed with the effect of liquid phase pressure and temperature on the absorption/stripping flux.  相似文献   

19.
The phase equilibria of CO2 and aqueous electrolyte solutions are important to various chemical‐, petroleum‐, and environmental‐related technical applications. CO2 solubility in aqueous CaCl2, MgCl2, Na2SO4, and KCl solutions at a pressure of 15 MPa, the temperatures from 323 to 423 K, and the ionic strength from 1 to 6 mol kg?1 were measured. Based on the measured experimental CO2 solubility, the previous developed fugacity‐activity thermodynamic model for the CO2‐NaCl‐H2O system was extended to account for the effects of different salt species on CO2 solubility in aqueous solutions at temperatures up to 523 K, pressures up to 150 MPa, and salt concentrations up to saturation. Comparisons of different models against literature data reveal a clear improvement of the proposed PSUCO2 model in predicting CO2 solubility in aqueous salt solutions. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2286–2297, 2015  相似文献   

20.
Nitrogen capture is a crucial strategy for coping with the environmental crisis arising from continually industrial NO emissions, while it suffers from the generally inefficient aquatic absorbent. This work developed a novel absorbent with favorable gas affinity via using sterically hindered imidazole to regulate the gas–liquid interface of typical K2S2O8 solution, initially achieving an efficiently catalytic absorption of poorly soluble NO. The best catalytic absorption efficiencies increased from 17.83% to 91.90% as compared to traditional one. Moreover, an established absorption kinetic model indicated that both capacity and rate of NO dissolution were increased. The imidazole molecules spontaneously migrated to gas–liquid interface of solution and imparted an additional dissolution impetus to NO. This catalytic absorption method overcoming the conventional NO dissolution limitation in water not only improves commercial NO capture, but also provides a new design of aquatic absorbent for heterogeneous reactions requiring transporting poorly soluble gases in aqueous solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号