首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solvent usage is a major source of environmental waste in pharmaceutical industry. The current paradigm shift toward continuous manufacturing in pharmaceutical industry has renewed the interest in continuous crystallization, which offers the prospect of easy solvent recycling. However, the selection of solvents for an integrated crystallization processes is nontrivial due to the likely trade‐off between optimal solvent properties for crystallization and solvent separation and recycling. A systematic approach for the simultaneous optimization of process conditions and solvent selection for continuous crystallization including solvent recycling is presented. A unified perturbed‐chain statistical associating fluid theory model framework is applied to predict thermodynamic properties related to solubility and vapor‐liquid equilibrium, which is integrated with a process model. A continuous mapping procedure is adopted to solve the optimization problem effectively. A case study based on continuous antisolvent crystallization of paracetamol with solvent separation via flash demonstrates the approach. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1205–1216, 2018  相似文献   

2.
3.
Pipeline transport is the major means for large‐scale and long‐distance CO2 transport in a CO2 capture and sequestration (CCS) project. But optimal design of the pipeline network remains a challenging problem, especially when considering allocation of intermediate sites, like pump stations, and selection of pipeline routes. A superstructure‐based mixed‐integer programming approach for optimal design of the pipeline network, targeting on minimizing the overall cost in a CCS project is presented. A decomposition algorithm to solve the computational difficulty caused by the large size and nonlinear nature of a real‐life design problem is also presented. To illustrate the capability of our models. A real‐life case study in North China, with 45 emissions sources and four storage sinks, is provided. The result shows that our model and decomposition algorithm is a practical and cost‐effective method for pipeline networks design. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2442–2461, 2014  相似文献   

4.
The kinetics for the reactions of carbon dioxide with 2‐amine‐2‐methyl‐1‐propanol (AMP) and carbon dioxide (CO2) in both aqueous and nonaqueous solutions were measured using a microfluidic method at a temperature range of 298–318 K. The mixtures of AMP‐water and AMP‐ethylene glycol were applied for the working systems. Gas‐liquid bubbly microflows were formed through a microsieve device and used to determine the reaction characteristics by online observation of the volume change of microbubbles at the initial flow stage. In this condition, a mathematical model according to zwitterion mechanism has been developed to predict the reaction kinetics. The predicted kinetics of CO2 absorption in the AMP aqueous solution verified the reliability of the method by comparing with literatures’ results. Furthermore, the reaction rate parameters for the reaction of CO2 with AMP in both solutions were determined. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4358–4366, 2015  相似文献   

5.
Polygeneration, typically involving co‐production of methanol and electricity, is a promising energy conversion technology which provides opportunities for high energy utilization efficiency and low/zero emissions. The optimal design of such a complex, large‐scale and highly nonlinear process system poses significant challenges. In this article, we present a multiobjective optimization model for the optimal design of a methanol/electricity polygeneration plant. Economic and environmental criteria are simultaneously optimized over a superstructure capturing a number of possible combinations of technologies and types of equipment. Aggregated models are considered, including a detailed methanol synthesis step with chemical kinetics and phase equilibrium considerations. The resulting model is formulated as a non‐convex mixed‐integer nonlinear programming problem. Global optimization and parallel computation techniques are employed to generate an optimal Pareto frontier. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

6.
In this work, the composite catalysts, SO42/ZrO2/γ‐Al2O3 (SZA), with different ZrO2 and γ‐Al2O3 mass ratios were prepared and used for the first time for the carbon dioxide (CO2)‐loaded monoethanolamine (MEA) solvent regeneration process to reduce the heat duty. The regeneration characteristics with five catalysts (three SZA catalysts and two parent catalysts) of a 5 M MEA solution with an initial CO2 loading of 0.5 mol CO2/mol amine at 98°C were investigated in terms of CO2 desorption performance and compared with those of a blank test. All the catalysts were characterized using X‐ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption–desorption experiment, ammonia temperature programmed desorption, and pyridine‐adsorption infrared spectroscopy. The results indicate that the SZA catalysts exhibited superior catalytic activity to the parent catalysts. A possible catalytic mechanism for the CO2 desorption process over SZA catalyst was proposed. The results reveal that SZA1/1, which possesses the highest joint value of Brφnsted acid sites (BASs) and mesopore surface area (MSA), presented the highest catalytic performance, decreasing the heat duty by 36.9% as compared to the catalyst‐free run. The SZA1/1 catalyst shows the best catalytic performance as compared with the reported catalyst for this purpose. Moreover, the SZA catalyst has advantages of low cost, good cyclic stability, easy regeneration and has no effect on the CO2 absorption performance of MEA. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3988–4001, 2018  相似文献   

7.
In this work, the equilibrium solubility of CO2 in a 1‐diethylamino‐2‐propanol (1DEA2P) solution was determined as a function of 1DEA2P concentration (over the range of 1–2 M), temperature (in the range of 298–333 K), and CO2 partial pressure (in the range of 8–101 kPa). These experimental results were used to fit the present correlation for K2 (Kent‐Eisenberg model, Austgen model, and Li‐Shen model). It was found that all of the models could represent the CO2 equilibrium solubility in 1DEA2P solution with ADDs for Kent‐Eisenberg model, Austgen model, and Li‐Shen model of 6.3, 7.3, and 12.2%, respectively. A new K2 correlation model, the Liu‐Helei model, was also developed to predict the CO2 equilibrium solubility in 1DEA2P solution with an excellent ADD of 3.4%. In addition, the heat of absorption of CO2 in 1DEA2P solution estimated by using the Gibbs‐Helmholtz equation was found to be ?45.7 ± 3.7 kJ/mol. Information and guidelines about effectively using data for screened solvents is also provided based on the three absorption parameters: CO2 equilibrium solubility, second order reaction constant (k2), and CO2 absorption heat. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4465–4475, 2017  相似文献   

8.
A stopped‐flow apparatus was used to measure the kinetics of carbon dioxide (CO2) absorption into aqueous solution of 1‐diethylamino‐2‐propanol (1DEA2P) in terms of observed pseudo‐first‐order rate constant (ko) and second‐order reaction rate constant (k2), in this work. The experiments were conducted over a 1DEA2P concentration range of 120–751 mol/m3, and a temperature range of 298–313 K. As 1DEA2P is a tertiary amine, the base‐catalyzed hydration mechanism was, then, applied to correlate the experimental CO2 absorption rate constants obtained from stopped‐flow apparatus. In addition, the pKa of 1DEA2P was experimentally measured over a temperature range of 278–333 K. The Brønsted relationship between reaction rate constant (obtained from stopped‐flow apparatus) and pKa was, then, studied. The results showed that the correlation based on the Brønsted relationship performed very well for predicting the absorption rate constant with an absolute average deviation of 5.2%, which is in an acceptable range of less than 10%. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3502–3510, 2014  相似文献   

9.
In this article, we investigate reaction solvent design using COSMO‐RS thermodynamics in conjunction with computer‐aided molecular design (CAMD) techniques. CAMD using COSMO‐RS has the distinct advantage of being a method based in quantum chemistry, which allows for the incorporation of quantum‐level information about transition states, reactive intermediates, and other important species directly into CAMD problems. This work encompasses three main additions to our previous framework for solvent design (Austin et al., Chem Eng Sci. 2017;159:93–105): (1) altering the group contribution method to estimate hydrogen‐bonding and non‐hydrogen‐bonding σ‐profiles; (2) ab initio modeling of strong solute/solvent interactions such as H‐bonding or coordinate bonding; and (3) solving mixture design problems limited to common laboratory and industrial solvents. We apply this methodology to three diverse case studies: accelerating the reaction rate of a Menschutkin reaction, controlling the chemoselectivity of a lithiation reaction, and controlling the chemoselectivity of a nucleophilic aromatic substitution reaction. We report improved solvents/mixtures in all cases. © 2017 American Institute of Chemical Engineers AIChE J, 63: 104–122, 2018  相似文献   

10.
A new methodology that includes process synthesis and control structure decisions for the optimal process and control design of dynamic systems under uncertainty is presented. The method integrates dynamic flexibility and dynamic feasibility in a single optimization formulation, thus, reducing the costs to assess the optimal design. A robust stability test is also included in the proposed method to ensure that the optimal design is stable in the presence of magnitude‐bounded perturbations. Since disturbances are treated as stochastic time‐discrete unmeasured inputs, the optimal process synthesis and control design specified by this method remains feasible and stable in the presence of the most critical realizations in the disturbances. The proposed methodology has been applied to simultaneously design and control a system of CSTRs and a ternary distillation column. A study on the computational costs associated with this method is presented and compared to that required by a dynamic optimization‐based scheme. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2497–2514, 2013  相似文献   

11.
Integrated approaches to the design of separation systems based on computer‐aided molecular and process design (CAMPD) can yield an optimal solvent structure and process conditions. The underlying design problem, however, is a challenging mixed integer nonlinear problem, prone to convergence failure as a result of the strong and nonlinear interactions between solvent and process. To facilitate the solution of this problem, a modified outer‐approximation (OA) algorithm is proposed. Tests that remove infeasible regions from both the process and molecular domains are embedded within the OA framework. Four tests are developed to remove subdomains where constraints on phase behavior that are implicit in process models or explicit process (design) constraints are violated. The algorithm is applied to three case studies relating to the separation of methane and carbon dioxide at high pressure. The process model is highly nonlinear, and includes mass and energy balances as well as phase equilibrium relations and physical property models based on a group‐contribution version of the statistical associating fluid theory (SAFT‐γ Mie) and on the GC+ group contribution method for some pure component properties. A fully automated implementation of the proposed approach is found to converge successfully to a local solution in 30 problem instances. The results highlight the extent to which optimal solvent and process conditions are interrelated and dependent on process specifications and constraints. The robustness of the CAMPD algorithm makes it possible to adopt higher‐fidelity nonlinear models in molecular and process design. © 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 62: 3484–3504, 2016  相似文献   

12.
In this study, the enhancement of physical absorption of carbon dioxide by Fe3O4‐water nanofluid under the influence of AC and DC magnetic fields was investigated. Furthermore, a gas‐liquid mass transfer model for single bubble systems was applied to predict mass transfer parameters. The coated Fe3O4 nanoparticles were prepared using co‐percipitation method. The results from characterization indicated that the nanoparticles surfaces were covered with hydroxyl groups and nanoparticles diameter were 10–13 nm. The findings showed that the mass transfer rate and solubility of carbon dioxide in magnetic nanofluid increased with an increase in the magnetic field strength. Results indicated that the enhancement of carbon dioxide solubility and average molar flux gas into liquid phase, particularly in the case of AC magnetic field. Moreover, results demonstrated that mass diffusivity of CO2 in nanofluid and renewal surface factor increased when the intensity of the field increased and consequently diffusion layer thickness decreased. © 2016 American Institute of Chemical Engineers AIChE J, 63: 2176–2186, 2017  相似文献   

13.
In this work, the equilibrium CO2 solubility in the aqueous tertiary amine, N‐methyl‐4‐piperidinol (MPDL) was measured over a range of temperatures, CO2 partial pressures and amine concentrations. The dissociation constant of the MPDL solution was determined as well. A new thermodynamic model was developed to predict the equilibrium CO2 solubility in the MPDL‐H2O‐CO2 system. This model, equipped with the correction factor (Cf), can give reasonable prediction with an average absolute deviation of 2.0%, and performs better than other models (i.e., KE model, Li‐Shen model, and Hu‐Chakma). The second‐order reaction rate constant (k2) of MPDL and the heat of CO2 absorption (–ΔHabs) into aqueous MPDL solutions were evaluated as well. Based on the comparison with some conventional amines, MPDL revealed a high‐equilibrium CO2 loading, reasonably fast absorption rate when compared with other tertiary amines, and a low energy requirement for regeneration. It may, therefore, be considered to be an alternative solvent for CO2 capture. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3395–3403, 2017  相似文献   

14.
Solubilities of H2S in five 1‐alkyl‐3‐methylimidazolium carboxylates ionic liquids (ILs) have been measured at temperatures from 293.15 to 333.15 K and pressures up to 350 kPa. It is shown that these ILs have significantly larger absorption capacities for H2S than those common ILs reported in the literature. The solubility is found to increase dramatically with the increasing alkalinity of the anions and slightly with the increasing length of the alkyl chains on the cations. It is further demonstrated that the absorption isotherms are typically nonideal. With the assumption of complex formation between H2S and ILs, a reaction equilibrium thermodynamic model is developed to correlate the experimental solubilities. The model favors a reaction mechanism of AB2 type that two IL molecules interact with one H2S molecule. Thermodynamic parameters such as Henry's law constants, reaction equilibrium constants, and heat of complex formation are also calculated to evaluate the absorption process of H2S in these ILs. © 2012 American Institute of Chemical Engineers AIChE J, 59: 2227–2235, 2013  相似文献   

15.
To develop a mild, effective, and clean strategy for recovery and recycling of anionic surfactants in CO2/N2‐switchable emulsions, a CO2/N2‐switchable anionic surfactant, which is a combination of dodecyl seleninic acid (DSA) and N,N,N′,N′‐tetramethyl‐1,2‐ethylenediamine (TMEDA), here referred to as DSA–TMEDA, was used to stabilize an oil‐in‐water (O/W) emulsion. Upon stimulation with CO2, DSA–TMEDA was switched off to form insoluble DSA and the water‐soluble TMEDA bicarbonate. Upon N2 bubbling and heating, the OFF state of DSA–TMEDA was restored to the surfactant of DSA–TMEDA. In this manner, O/W emulsions stabilized by DSA–TMEDA can be switched reversibly between demulsification (phase separation) and re‐emulsification (recovered emulsion) by triggering with CO2/N2 over ten times. After breakage of the emulsion, nearly all of the OFF state surfactant could be separated conveniently away from the oil phase, thus facilitating recovery and recycling of the surfactant afterward in emulsifying oil. No obvious adverse changes in the dispersed oil particles size and the relative stability of the regenerated emulsions were observed over five cycles, and the surfactant loss can be neglected during the recycling.  相似文献   

16.
《中国化学工程学报》2024,72(8):117-125
In this study,an integrated technology is proposed for the absorption and utilization of CO2 in alka-nolamine solution for the preparation of BaCO3 in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2 concentration on the absorption rate and amount of CO2 and the preparation ofBaCO3 are investigated.The results reveal that the absorption rate and amount of CO2 follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-meth-yldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO2 absorption.The ab-sorption rate and amount of CO2 under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO3 prepared in the rotating packed bed is in the range of 57.2-89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m2.g-1).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO2 in alkanolamine solution for the preparation of BaCO3.This study provides new insights into carbon emissions reduction and carbon utilization.  相似文献   

17.
Catalytic reforming of methane with carbon dioxide was studied in a fixed‐bed reactor using unpromoted and promoted Ni/γ‐Al2O3 catalysts. The effects of promoters, such as alkali metal oxide (Na2O), alkaline‐earth metal oxides (MgO, CaO) and rare‐earth metal oxides (La2O3, CeO2), on the catalytic activity and stability in terms of coking resistance and coke reactivity were systematically examined. CaO‐, La2O3‐ and CeO2‐promoted Ni/γ‐Al2O3 catalysts exhibited higher stability whereas MgO‐ and Na2O‐promoted catalysts demonstrated lower activity and significant deactivation. Metal‐oxide promoters (Na2O, MgO, La2O3, and CeO2) suppressed the carbon deposition, primarily due to the enhanced basicities of the supports and highly reactive carbon species formed during the reaction. In contrast, CaO increased the carbon deposition; however, it promoted the carbon reactivity. © 2000 Society of Chemical Industry  相似文献   

18.
Gas‐liquid flow dynamics and CO2‐monoethanolamine absorption performances of an oscillating countercurrent packed bed were analyzed by means of a transient 3D nonisothermal two‐fluid flow model with a goal to understand the behavior of scrubbing units on‐board floating production, storage and offloading platforms. Gas‐liquid flow deviation from axial symmetry was significant at larger vessel inclinations prompting noticeable liquid accumulation in the column lowermost area. Conversely, in static vertical and slightly inclined columns only a reduced fraction of the liquid was subject to transverse segregation. Externally‐generated column oscillations brought about complex secondary flows in radial and tangential directions resulting in oscillatory patterns with amplitude and propagation frequency affected by the packed bed oscillations. CO2 abatement in inclined and asymmetrically oscillating columns suffered perceptible deviations with respect to vertical configuration while symmetrically oscillating columns gave rise to CO2 performances oscillating around the steady‐state solutions of the vertical column. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1064–1076, 2017  相似文献   

19.
The reactivity of BaZrO3 with CO2 has been addressed as one of the major challenges with BaZrO3‐based electrolytes in protonic ceramic fuel cells. Here, we present a study of the effect of CO2 exposure on BaZrO3‐materials at elevated temperatures. Dense BaZr1?xYxO3?x/2 (x = 0, 0.05, 0.1, 0.2) and BaCe0.2Zr0.7Y0.1O2.95 ceramics were prepared by sintering of powder prepared by spray pyrolysis. The Vickers indentation method was used to determine the hardness and estimate the fracture toughness of pristine materials as well as the corresponding materials exposed to CO2. Formation of BaCO3 on the surface of exposed ceramics was confirmed by X‐ray diffraction and electron microcopy. The reaction resulted in formation of Ba‐deficient perovskite at the exposed surface. The reaction with CO2 was most pronounced at 650°C compared to the other temperatures applied in the study. The reactivity was also shown to depend on the Y‐content and the grain size and was most pronounced for BaZr0.9Y0.1O2.95. The reaction with CO2 was observed to have a profound effect on the fracture toughness of the ceramics, demonstrating a depression of the mechanical stability of the materials. The results are discussed with respect to the chemical and mechanical stability of BaZrO3 materials, with particular emphasis on the composition and grain size.  相似文献   

20.
β2‐Microglobulin (β2‐m) is a protein responsible for a severe complication of long‐term hemodialysis, known as dialysis‐related amyloidosis, in which initial β2‐m misfolding leads to amyloid fibril deposition, mainly in the skeletal tissue. Whereas much attention is paid to understanding the complex mechanism of amyloid formation, the evaluation of small molecules that may bind β2‐m and possibly inhibit the aggregation process is still largely unexplored mainly because the protein lacks a specific active site. Based on our previous findings, we selected a pilot set of sulfonated molecules that are known to either bind or not to the protein, including binders that are anti‐amyloidogenic. We show how a complementary approach, using high‐resolution mass spectrometry and in silico studies, can offer rapid and precise information on affinity, as well as insight into the structural requisites that favour or disfavour the inhibitory activity. Overall, this approach can be used for predictive purposes and for a rapid screening of fibrillogenesis inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号