首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Literature data show that gas permeability of MFI zeolite membrane varies depending on the geometry of supports. The present work investigates the effects of the surface curvature of substrates on the microstructure and the gas permeation property of supported zeolite membranes. MFI zeolite membranes were grown on porous alumina hollow fibers with different diameters (surface curvature) by the secondary growth method. Single gas permeation and H2/CO2 binary gas separation from 25 to 300 were conducted to study the membrane quality. The zeolite membranes on supports of larger surface curvature have higher permeability and lower selectivity due to the presence of more inter‐crystalline gaps in the zeolite layer formed during the template removal step. The effects of the support surface curvature (and geometry) on zeolite membrane microstructure and gas permeation characteristics are semi‐quantitatively analyzed by a transport model considering both structural change and gas diffusion in micropores. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3419–3428, 2018  相似文献   

2.
A number of U‐shaped K2NiF4‐type oxide hollow fiber membranes based on (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ (PLNCG) were successfully prepared by a phase inversion spinning process. The PLNCG hollow fiber membranes were then used to investigate the effect of CO2 concentration in both the sweep gas and the feed air on the oxygen permeation flux. With pure CO2 as the sweep gas and even 10% CO2 in the feed air, a steady oxygen permeation flux of 0.9 mL/min·cm2 (STP) is obtained at 975°C during 310 h, and no decline of the oxygen permeation flux is observed. XRD, SEM and EDS characterizations show the spent membrane still maintains the intact microstructure and perfect K2NiF4‐type phase structure without carbonate, which indicates that the U‐shaped PLNCG hollow fiber membrane is a very stable membrane under CO2 atmosphere and has great potential for the practical application in oxyfuel techniques for CO2 capture and storage.©2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

3.
A multi‐layer series‐resistance mass transfer model was developed to simulate mass transfer behaviors of water/ethanol mixture through hollow fiber NaA zeolite membranes. The mass transfer through zeolite layer was described by Maxwell‐Stefan mechanism based on adsorption and diffusion parameters obtained from molecular simulation. The mass transfer through asymmetric hollow fiber support was described by dusty gas model involving Knudsen diffusion and viscous flow. It was found that the sponge‐like layer of support besides of zeolite layer made an important contribution to overall membrane transfer resistance while the finger‐like layer had less effect. When permeate pressure shifted from 0.2 to 7.5 kPa, the mass transfer resistance contribution of sponge‐like layer varied from 27.1 to 17.8%. Effects of microstructure parameters of support on mass transfer through membrane were investigated extensively. Large pore size and thin thickness for sponge‐like layer of support were beneficial to improve water permeation flux. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2468–2478, 2016  相似文献   

4.
孔晴晴  张春  王学瑞  顾学红 《化工学报》2014,65(12):5061-5066
以氟化铵为矿化剂、四丙基溴化铵为模板剂,在负载晶种的钇稳定氧化锆(YSZ)中空纤维支撑体表面合成了MFI型分子筛膜,并用于乙醇/水的分离;系统考察了氟硅比(nNH4F/nSiO2)、合成时间等条件对膜分离性能的影响,在nNH4F/nSiO2为0.8、合成时间为8 h下合成出高性能膜,其通量达8.2 kg·m-2·h-1、乙醇/水分离因子为47;同时研究了MFI型分子筛膜在乙醇/水体系中的分离稳定性,揭示出该方法所合成膜表面无Si-OH,从而避免了Si-OH与乙醇反应而带来膜分离性能的下降.  相似文献   

5.
A BaCoxFeyZrzO3?δ (BCFZ) perovskite hollow fiber membrane was used to construct reactors for the partial oxidation of methane (POM) to syngas. The performance of the BCFZ fibers in the POM was studied (i) without any catalyst, (ii) with catalyst‐coated fibers, and (iii) with catalyst packed around the fibers. In addition to the performance in the POM, the stability of the BCFZ hollow fiber membranes was investigated for the different catalyst arrangements. Best stability of the BCFZ hollow fiber membrane reactor in the POM could be obtained if the reforming catalyst is placed behind the oxygen permeation zone. It was found that a direct contact of the catalyst and the fiber must be avoided which could be achieved by coating the fiber with a gold film. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

6.
建立了水蒸气在中空纤维复合膜中渗透的微分阻力模型,用实验验证了模型的可靠性。采用该模型估算出中空纤维膜的结构参数,研究了水蒸气在各层膜中的阻力,并以H2O/C2H2系统为例,考察了膜的结构参数对H2O/C2H2选择性的影响。  相似文献   

7.
8.
To accelerate the commercial application of mixed‐conducting membrane reactor for catalytic reaction processes, a robust mixed‐conducting multichannel hollow fiber (MCMHF) membrane reactor was constructed and characterized in this work. The MCMHF membrane based on reduction‐tolerant and CO2‐stable SrFe0.8Nb0.2O3‐δ (SFN) oxide not only possesses a good mechanical strength but also has a high oxygen permeation flux under air/He gradient, which is about four times that of SFN disk membrane. When partial oxidation of methane (POM) was performed in the MCMHF membrane reactor, excellent reaction performance (oxygen flux of 19.2 mL min?1 cm?2, hydrogen production rate of 54.7 mL min?1 cm?2, methane conversion of 94.6% and the CO selectivity of 99%) was achieved at 1173 K. And also, the MCMHF membrane reactor for POM reaction was operated stably for 120 h without obvious degradation of reaction performance. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2592–2599, 2015  相似文献   

9.
陈晨  王明明  王志刚  谭小耀 《化工学报》2021,72(Z1):482-493
采用纺丝-烧结技术制备了具有内表面致密皮层的外支撑式金属镍非对称中空纤维膜,并用于乙醇自热重整(EATR)制氢,研究了温度、进料流速、吹扫气流速、水醇比(S/C)以及氧醇比(O2/C)等操作条件对膜制氢性能的影响。结果表明,金属镍非对称中空纤维膜既具有优异的EATR催化活性,又有良好的透氢性能。在500~1000℃、S/C=4、O2/C=0.8的条件下乙醇可完全转化,H2产率和H2渗透通量可分别达到81.59%和13.99 mmol/(m2·s),增加进料中氧气含量可显著抑制膜表面积炭,但同时也会降低氢气产率和一氧化碳选择性。  相似文献   

10.
A mass transfer model in consideration of multi-layer resistances through NaA zeolite membrane and lumen pressure drop in the permeate sidewas developed to describe pervaporation dehydration through scaled-up hollowfiber supported NaA zeolitemembrane. Itwas found that the transfer resistance in the lumen of the permeate side is strongly related with geometric size of hollow fiber zeolite membrane,which could not be neglected. The effect of geometric size on pervaporation dehydration could bemore significant under higher vacuumpressure in the permeate side. The transfer resistance in the lumen increaseswith the hollowfiber length but decreaseswith lumen diameter. The geometric structure could be optimized in terms of the ratio of lumen diameter to membrane length. A critical value of dI/L (Rc) to achieve high permeation flux was empirically correlated with extraction pressure in the permeate side. Typically, for a hollow fiber supported NaA zeolite membrane with length of 0.40 m, the lumen diameter should be larger than 2.0 mm under the extraction pressure of 1500 Pa.  相似文献   

11.
ZIF‐8/6FDA‐DAM, a proven mixed‐matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual‐layer ZIF‐8/6FDA‐DAM mixed‐matrix hollow fiber membranes with ZIF‐8 nanoparticle loading up to 30 wt % using the conventional dry‐jet/wet‐quench fiber spinning technique. The mixed‐matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed‐matrix dense films. Critical variables controlling successful formation of mixed‐matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high‐loading mixed‐matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed‐matrix membranes. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2625–2635, 2014  相似文献   

12.
Equilibrium shifts of methane steam reforming in membrane reactors consisting of either tetramethoxysilane‐derived amorphous hydrogen‐selective silica membrane and rhodium catalysts, or hexamethyldisiloxane‐derived membrane and nickel catalysts is experimentally demonstrated. The hexamethyldisiloxane‐derived silica membrane showed stable permeance as high as 8 × 10?8 mol m?2 s?1 Pa?1 of H2 after exposure to 76 kPa of vapor pressure at 773 K for 60 h, which was a much better performance than that from the tetramethoxysilane‐derived silica membrane. Furthermore, the better silica membrane also maintained selectivity of H2/N2 as high as 103 under the above hydrothermal conditions. The degree of the equilibrium shifts under various feedrate and pressure conditions coincided with the order of H2 permeance. In addition, the equilibrium shift of methane steam reforming was stable for 30 h with an S/C ratio of 2.5 at 773 K using a membrane reactor integrated with hexamethyldisiloxane‐derived membrane and nickel catalyst. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

13.
The influences of bulk diffusion and surface exchange on oxygen transport of (La0.6Ca0.4)(Co0.8Fe0.2)O3-δ (LCCF) hollow fiber membranes were investigated. As an outcome, two strategies for increasing the oxygen permeation were pursued. First, porous LCCF hollow fibers as support were coated with a 22 μm dense LCCF separation layer through dip coating and co-sintering. The oxygen permeation of the porous fiber with dense layer reached up to 5.10 mL min?1 cm-2 at 1000 °C in a 50 % CO2 atmosphere. Second, surface etching of dense LCCF hollow fibers with H2SO4 was applied. The surface etching of both inner and outer surfaces leads to a permeation improvement up to 86.0 %. This finding implies that the surface exchange reaction plays a key role in oxygen transport through LCCF hollow fibers. A good long-term (>250 h) stability of the asymmetric hollow fiber in a 50 % CO2 atmosphere was found at 900 °C.  相似文献   

14.
15.
A multichannel mixed‐conducting hollow fiber (MMCHF) membrane, 0.5 wt % Nb2O5‐doped SrCo0.8 Fe0.2O3‐δ (SCFNb), has been successfully prepared by phase inversion and sintering technique. The crystalline structure, morphology, sintering behavior, breaking load, and oxygen permeability of the MMCHF membrane were studied systematically. The MMCHF membrane with porous‐dense asymmetrical microstructure was obtained with the outer diameter of 2.46 mm and inner tetra‐bore diameter of 0.80 mm. The breaking load of the MMCHF membrane was 3–6 times that of conventional single‐channel mixed‐conducting hollow fiber membrane. The MMCHF membrane showed a high oxygen flux which was about two times that of symmetric capillary membrane at similar conditions as well as a good long‐term stability under low oxygen partial pressure atmosphere. This work proposed a new configuration for the mixed‐conducting membranes, combining advantages of multichannel tubular membrane technology and conventional hollow fibers. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1969–1976, 2014  相似文献   

16.
17.
Porous polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) hollow fiber membranes were fabricated through a wet spinning process. In order to improve the membrane structure, composition of the polymer solution was adjusted by studying ternary phase diagrams of polymer/solvent/non-solvent. The prepared membranes were used for sweeping gas membrane distillation (SGMD) of 20 wt% ethylene glycol (EG) aqueous solution. The membranes were characterized by different tests such as N2 permeation, overall porosity, critical water entry pressure (CEPw), water contact angle and collapsing pressure. From FESEM examination, addition of 3 wt% glycerol in the PVDF-HFP solution, produced membranes with smaller finger-likes cavities, higher surface porosity and smaller pore sizes. Increasing the polymer concentration up to 21 wt% resulted in a dense spongy structure which could significantly reduce the N2 permeance. The membrane prepared by 3 wt% glycerol and 17 wt% polymer demonstrated an improved structure with mean pore size of 18 nm and a high surface porosity of 872 m−1. CEPw of 350 kPa and overall porosity of 84% were also obtained for the improved membrane. Collapsing pressure of the membranes relatively improved by increasing the polymer concentration. From the SGMD test, the developed membrane represented a maximum permeate flux of 28 kg·m−2·h−1 which is almost 19% higher than the flux of plain membrane. During 120 h of a long-term SGMD operation, a gradual flux reduction of 30% was noticed. In addition, EG rejection reduced from 100% to around 99.5% during 120 h of the operation.  相似文献   

18.
19.
Composite layer containing postmodified MIL‐53 (P‐MIL‐53) was exploited to be coated on as‐fabricated asymmetric hollow fiber membrane for improving gas separation performance. The morphology and pore size distribution of P‐MIL‐53 particles were characterized by SEM and N2 adsorption isotherm. The EDX mapping and FTIR spectra were performed to confirm the presence of P‐MIL‐53 deposited on the outer surface of hollow fiber membranes. The results of pure gas permeation measurement indicated that incorporation of P‐MIL‐53 particles in coating layer could improve permeation properties of hollow fiber membranes. By varying coating times and P‐MIL‐53 content, the membrane coated with PDMS/15%P‐MIL‐53 composite by three times achieved best performance. Compared to pure PDMS coated membrane, CO2 permeance was enhanced from 29.96 GPU to 40.24 GPU and ideal selectivity of CO2/N2 and CO2/CH4 also increased from 23.28 and 26.95 to 28.08 and 32.03, respectively. The gas transport through composite membrane was governed by solution‐diffusion mechanism and CO2 preferential adsorption of P‐MIL‐53 contributed to considerable increase of CO2 solubility resulting in accelerated permeation rate. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44999.  相似文献   

20.
The effect of sulfonation and bromination‐sulfonation on the gas transport properties of polyphenylene oxide has been investigated. These high‐performance modified polymers have been studied in the form of TFC membranes by solution coating on the skin side of polyetherimide hollow fibers. TFC membrane modules prepared from sulfonated‐brominated polyphenylene oxide as the active layer coated on polyetherimide hollow fibers. Stability of the TFC membranes was greatly improved when a wet feed stream was used instead of a dry one. Water vapor in the feed stream most likely prevented the active layer from stress cracking on drying. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 275–282, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号