首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

In the microcellular foam plastic processing, cellular formation stage was being an essential stage since the nucleation and growth of the cell take place within. Based on classical nucleation theory, diminution of the free energy for nucleation, exponentially lead to an increase in the nucleation rate. This can be done by increasing the super-saturation level which achieved by heating the gas-saturated polymer. Hence, the advance is taken out by utilizing the ultrasound wave simultaneously with heating for foaming Polystyrene-scCO2, which, not only to keep the super-saturation degree but also reduce the nucleation barrier. In this work, foaming was conducted under 45 kHz of ultrasound and varying the foaming temperature after saturating polystyrene with scCO2. The results demonstrate, that foaming under ultrasound, the expansion ratio attained up to 1.5 fold, increase along with the heating temperature. Higher cell densities obtained with ultrasound applied at 50°C, however only slight difference can be seen, which about 1010–1011 cell/cm3. From the cell size distribution results, cell distributed around 0.5–3.5 µm, with or without ultrasound applied for 60 and 70°C, Meanwhile at 50°C of foaming, the lowest cell size obtained with the aid of ultrasound in the range of 0.3–2.4 µm.  相似文献   

2.
Circulating hemopexin is the primary protein responsible for the clearance of heme; therefore, it is a systemic combatant against deleterious inflammation and oxidative stress induced by the presence of free heme. This role of hemopexin is critical in hemolytic pathophysiology. In this review, we outline the current research regarding how the dynamic activity of hemopexin is implicated in sickle cell disease, which is characterized by a pathological aggregation of red blood cells and excessive hemolysis. This pathophysiology leads to symptoms such as acute kidney injury, vaso-occlusion, ischemic stroke, pain crises, and pulmonary hypertension exacerbated by the presence of free heme and hemoglobin. This review includes in vivo studies in mouse, rat, and guinea pig models of sickle cell disease, as well as studies in human samples. In summary, the current research indicates that hemopexin is likely protective against these symptoms and that rectifying depleted hemopexin in patients with sickle cell disease could improve or prevent the symptoms. The data compiled in this review suggest that further preclinical and clinical research should be conducted to uncover pathways of hemopexin in pathological states to evaluate its potential clinical function as both a biomarker and therapy for sickle cell disease and related hemoglobinopathies.  相似文献   

3.
We present a free‐energy driven kinetic Monte Carlo model to simulate homogeneous nucleation of metal nanoparticles (NPs) from vapor phase. The model accounts for monomer‐cluster condensations, cluster–cluster collisions, and cluster evaporations simultaneously. Specifically, we investigate the homogeneous nucleation of Al NPs starting with different initial background temperatures. Our results indicate good agreement with earlier phenomenological studies using the Gibbs# free energy formulation from Classical Nucleation Theory (CNT). Furthermore, nucleation rates for various clusters are calculated through direct cluster observations. The steady‐state nucleation rate estimated using two different approaches namely, the Yasuoka‐Matsumoto (YM) and mean first passage time (MFPT) methods indicate excellent agreement with each other. Finally, our simulation results depict the expected increase in the entropy of mixing as clusters approach the nucleation barrier, followed by its subsequent drastic loss after the critical cluster formation resulting from first‐order phase transitions. © 2017 American Institute of Chemical Engineers AIChE J, 63: 18–28, 2018  相似文献   

4.
Unambiguous quantitative evidence for the catalytic action of seed crystals in cocoa butter is presented. We used an ultrasound velocity technique to determine the isothermal growth of solid fat content in cocoa butter oil-in-water emulsions, in which the probability of finding a seed crystal in any one droplet was around 0.37 at 14.2°C. The upper limit for the size of seed crystals in West African cocoa butter was around 0.09 μm, the Gibbs free energy for nucleation was 0.11 mj m−2, and the concentration of seed crystals was in the range of 1016 to 1017 m−3. X-ray diffraction measurements showed that emulsified cocoa butter crystallizes in the α polymorph and does not appear to transform to the β′ form within the first 25 min of crystallization. Primary nucleation events in cocoa butter emulsions are accounted for by seed crystals. Collision-mediated nucleation, a secondary nucleation mechanism, in which solid droplets (containing seed crystals) catalyze nucleation in liquid droplets, is shown to account for subsequent crystallization. This secondary nucleation mechanism is enhanced by stirring.  相似文献   

5.
Heterogeneous nucleation probability distributions of gas hydrates on a water droplet that was supported by inert and immiscible perfluorocarbon oil, perfluorodecalin is studied. The guest gas used was a mixture of 90 mol % methane and 10 mol % propane. The probability distribution was measured using a high pressure automated lag time apparatus under the guest gas pressure range of 6.7–12.5 MPa and the cooling rate range of 0.002–0.02 K/s. Nucleation curves were derived for unit area of water surface. The nucleation rate per unit area of water surface that was contained in a glass sample cell, which differed significantly from that on a quasi‐free water droplet, is also derived. It is concluded that the nucleation curves in the presence of a solid wall should be normalized to the unit length of the three‐phase line at which water, guest gas, and the solid wall meet. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2611–2617, 2015  相似文献   

6.
介绍了泡沫塑料加工过程中气泡成核的经典理论,给出了几种成核方式的临界成核半径、所需克服的吉布斯(Gibbs)自由能及成核速率的计算公式;评述了经典成核理论的发展,包括自由体积和气体过饱和度对气泡成核的影响,并分析指出了经典成核理论对动态聚合物熔体气泡成核解释存在的不足。  相似文献   

7.
介绍了泡沫塑料加工过程中气泡成核的经典理论,给出了几种成核方式的临界成核半径、所需克服的吉布斯(Gibbs)自由能及成核速率的计算公式;评述了经典成核理论的发展,包括自由体积和气体过饱和度对气泡成核的影响,并分析指出了经典成核理论对动态聚合物熔体气泡成核解释存在的不足。  相似文献   

8.
The storage stability and free radical polymerizations of miniemulsions comprising methyl methacrylate (MMA), butyl acrylate (BA), and a reactive costabilizer stearyl methacrylate (SMA) were investigated. The Ostwald ripening rate increases with increasing MMA content in the monomer mixture. Both the pseudo‐two‐component model and empirical equation with one adjustable parameter k adequately predicted the Ostwald ripening rate data. For the empirical model, the least‐squares best fit technique gave a value of k equal to 677.5 and values of Ostwald ripening rate and water solubility equal to (8.8 ± 0.2) × 10?21 cm3/s and 1.8 × 10?9 cm3/cm3 for SMA, respectively. These two models were combined to impart some physical insight to the parameter k. The kinetic studies showed that the polymerization rate increased with increasing MMA content. This is closely related to the nature of the constituent monomers MMA and BA and the particle nucleation mechanisms. The reactive costabilizer SMA is not hydrophobic enough to completely eliminate the Ostwald ripening effect, thereby increasing the probability of polymer reactions in the continuous aqueous phase. Thus, in addition to monomer droplet nucleation, particle nuclei can be generated in the aqueous phase via homogeneous nucleation. The extent of homogeneous nucleation increased with increasing MMA content and, as a result, the number of reaction loci available for the major polymerization to take place followed the same trend. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
When a polymer crystallizes from solution, it is well known that the resulting morphology depends on whether any liquid–liquid phase separation (LLPS) has preceded crystallization. In addition to the dense morphology that results when crystallization occurs directly from a homogeneous solution, at least three other distinctly different morphologies are produced if crystallization follows LLPS. Although much work has been reported in this regard, a framework that can relate the path that a process might follow across a phase diagram to the consequent morphology is lacking. We report here the fundamental elements of a simple thermodynamic framework that serves to identify the driving forces that produce these different morphologies. It is based on identification of the nucleating phase, if any, in LLPS and coupling it with the domain in which nucleation of crystallization occurs. The essential elements of the framework for morphological evolution are demonstrated by relating the sequence of phase transitions to the morphology which can result in the crystallized polymer when a polymer solution is cooled from a homogeneous state at a high temperature. Four distinctly different morphologies are shown to evolve, depending on whether crystallization occurs (a) directly from a homogeneous solution (dense); (b) following binodal liquid–liquid phase separation, LLPS, with nucleation of the polymer-rich phase (GMP—globular microporous); (c) following spinodal LLPS (FMP—fibrillar microporous); or (d) following binodal LLPS with nucleation of the solvent-rich phase (CTMP—cell-tunnel microporous). An important implication of the framework is that a predictable sequence of “dense → GMP → FMP → CTMP → dense” morphologies has to arise with increase in overall polymer concentration in such solutions. The framework also serves to identify conditions, such as passage through specific temperature/concentration regions in the phase diagram, that would increase the likelihood of forming mixed or coexisting morphologies. However, it is still necessary to develop appropriate kinetic models to predict sizes of the morphological components within each of the four morphologies. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1343–1355, 1999  相似文献   

10.
Potassium sodium niobate (KNN) thin films are potentially useful for energy harvesting devices and for lead-free piezoelectric microelectromechanical systems. This work reports the activation energies for nucleation, growth and perovskite phase transformation from a 0.5% manganese-doped KNN 2-methoxyethanol-based solution modified with acetylacetone and excess alkali precursors. The films were annealed in a rapid thermal processor (RTP) with a hold step at temperatures from 500 to 550°C. The activation energies for perovskite transformation and growth, determined by electron micrograph observation, were 687 ± 13 and 194 ± 10 kJ/mol. The activation energy for nucleation was 341 ± 20 kJ/mol. Based on these data, crystallization in KNN is found to be nucleation-limited; thus, it should be possible to reduce the crystallization temperature by utilizing a seed layer which provides nucleation sites, provided the organics are removed from the film.  相似文献   

11.
Based on the Gibbs‐Tolman‐Koenig formalism, we considered the Tolman correction to the free energy barrier of bubble nucleation in polymer‐gas binary mixtures. For this class of systems, the correction may be estimated with a reasonable accuracy using experimentally accessible macroscopic thermodynamic quantities only. Although the Tolman correction is applicable only in the low supersaturation regime, a simple ansatz regarding the supersaturation dependence of the Tolman length can be made to extend the usefulness of this approach and to yield the free energy barrier that vanishes at the mean‐field spinodal as demanded by thermodynamic considerations. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3042–3053, 2013  相似文献   

12.
Stress whitening pretreatment on expandable acrylonitrile (AN)/methacrylic acid (MAA) copolymer was adopted to reduce the cell size of high-performance AN/MAA copolymer foam. The article studied the influence of stress whitening on cell structure and mechanical properties of AN/MAA copolymer foam, observed foaming behavior of stress- whitened copolymer by hot stage optical microscopy, and discussed its bubble nucleation mechanism. The results indicate that stress-whitening pretreatment makes the cell size of corresponding copolymer foam reduce sharply when stress whitening occurs. The cell size of copolymer foam with the density of 32 kg/m3 and 75 kg/m3 reduces from 1.07 mm to 0.37 mm and from 0.59 mm to 0.076 mm, respectively. It also causes residual fragmental films in cells. The defects created by stress whitening work first as a bubble nucleus, then expand and combine together as cells. Stress whitening creates new interface between gas and polymer phase and new volume of gas phase, reduces the change of interface free energy and volume free energy during bubble nucleation, and improves the bubble nucleation rate. The foaming phenomenon of stress whitened copolymer is in line with the defect nucleation mechanism. However, stress whitening pretreatment reduces the mechanical properties of final foam because of residual fragmental films.  相似文献   

13.
This work is an experimental study of the effects of nanoparticles with different characteristics and contents on foaming composites made of three different nanosilica particles with different geometrical and chemical surface properties in a polystyrene matrix. In addition to the general characteristics reported in our last study on the morphology of polymer–nanoparticle composites, this study shows that nanosilicas of larger sizes can result in foams of higher cell densities. Additionally, the cell densities of foams can be reduced if the nanoparticle surface becomes more affine to the polymer matrix chemically. These results show a correspondence with the effects of the characteristics of the nucleation agent on the nucleation of bubbles, which have been explored previously. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Liyun Zha 《Polymer》2009,50(15):3828-8857
We report dynamic Monte Carlo simulations of crystal nucleation in polymer bulk phase segregated from solutions. We found that poorer solvent enhances crystal nucleation in the concentrated phase of polymers. In addition, when the solvent becomes poor enough, crystal nucleation prefers to occur at the diffuse interfaces. The results are consistent with the predictions from theoretical phase diagrams, but something different from immiscible polymer blends. The surface-enhanced crystallization may explain the bowl-shaped crystal aggregates observed experimentally in poor solvent.  相似文献   

15.
Systematic studies based on well‐controllable model systems aim at understanding how crystallization from a melt or solution of randomly coiled polymers leads to the formation of mono‐lamellar crystals. However, besides mono‐lamellar crystals also various other morphologically simple but yet not well understood structures are found. In particular, stacks of correlated lamellar crystals have been observed since the early days of the study of polymer crystallization. Here, we demonstrate that a recently proposed mechanism of self‐induced nucleation within lamellar crystals provides a possibility to explain how in such stacks lamellar crystals can be correlated. Examining various polymer systems, we show that the probability for generating self‐induced nuclei depends on the morphology of an initiating dendritic basal lamellar crystal. In addition, we provide evidence that this self‐induced nucleation mechanism, together with a high rate of transport of molten polymer to the fold surface, may allow the formation of polymer crystals with similar size in all three dimensions, containing a large number of superposed correlated lamellae. © 2019 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

16.
Vekilov PG 《Nanoscale》2010,2(11):2346-2357
The formation of crystalline nanoparticles starts with nucleation and control of nucleation is crucial for the control of the number, size, perfection, polymorph modification and other characteristics of particles. Recently, there have been significant advances in the understanding of the mechanism of nucleation of crystals in solution. The most significant of these is the two-step mechanism of nucleation, according to which the crystalline nucleus appears inside pre-existing metastable clusters of size several hundred nanometers, which consist of dense liquid and are suspended in the solution. While initially proposed for protein crystals, the applicability of this mechanism has been demonstrated for small-molecule organic and inorganic materials, colloids, and biominerals. This mechanism helps to explain several long-standing puzzles of crystal nucleation in solution: nucleation rates which are many orders of magnitude lower than theoretical predictions, nucleation kinetic dependencies with steady or receding parts at increasing supersaturation, the role of heterogeneous substrates for polymorph selection, the significance of the dense protein liquid, and others. More importantly, this mechanism provides powerful tools for control of the nucleation process by varying the solution thermodynamic parameters so that the volume occupied by the dense liquid shrinks or expands.  相似文献   

17.
A systematic model is presented for a free expansion polymer foaming process that includes simultaneous nucleation and bubble growth. An influence volume approach, which couples nucleation and bubble growth, is used to account for the limited supply of dissolved gas. The melt rheology is described using the Larson viscoelastic model. The initial conditions are obtained at the upper bound of critical cluster size under conditions of elastic deformation. The resulting set of equations are solved using a combination of numerical techniques. A parametric study is conducted to examine the effects of key process variables on bubble growth, nucleation, and final bubble size distribution. It shows that the factors influencing nucleation and growth affect the ultimate bubble sizes and their distribution. The Gibbs number, a dimensionless measure of the barrier to overcome for nucleation, has the strongest impact on the cellular structure of the foam. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1353–1368, 1998  相似文献   

18.
周鹏翔  王猛  李辉  林鑫  黄卫东 《化学工程》2012,40(7):30-33,42
为了研究疏水基底粗糙度对形核特性的影响规律,采用腐蚀及修饰的方法得到具有不同粗糙度的疏水基底,通过对基底表面粗糙度因子的计算和表观润湿角的测量,考察了基底粗糙度对基底表面水的表观润湿角的定量关系;在制备的粗糙基底上进行了冷凝蒸汽形核实验,利用统计方法得到基底粗糙度因子与冷凝液滴数量的关系。结果表明:基底微观形貌对水在基底表面的表观润湿性和形核特性具有显著影响,对于疏水基底,随着基底粗糙度的增加,水滴在其表面的表观润湿角增大;相同的基底过冷度下,越粗糙的基底表面蒸汽冷凝形核点越少。分析认为,基底微观形貌通过影响液胚在其表面的表观润湿角,进而改变异质形核功,造成了粗糙基底表面形核特性的改变。实验现象与基于Wenzel模型的粗糙基底异质形核理论取得了一致。  相似文献   

19.
The effect of self‐nucleation on the crystallization and melting behavior of isotactic polypropylene (i‐PP) and low ethylene content propylene–ethylene copolymers were investigated. Isothermal crystallization kinetics were studied using the Avrami equation and Lauritzen‐Hoffman nucleation theory. It was found that self‐nucleation can enhance the crystallization. The surface free energy ςe decreased for the self‐nucleated sample. The melting behavior was affected by the preselected temperature, Ts, at which the polymer was partially melted. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1559–1564, 1999  相似文献   

20.
The aim of this work is to synthesize novel 3‐methylthiophene (3MTh)/biphenyl (Biph) copolymer films by electropolymerization and study their mechanical properties through nanoindentation. The morphology, the chemical structure as well as the electrical conductivity of the copolymer films depended strongly on the electropolymerization conditions. It was found that the polymer deposition follow an instantaneous, two‐dimensional nucleation and growth mechanism leading to homogenous films. The copolymer films had higher Young modulus and nanohardness than poly(3‐methylthiophene) (3PMTh), indicating that the incorporation of Biph units within the P3MTh chain leads to a more densely packed structure and a more brittle polymer. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42575.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号