首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The universal quasichemical functional‐group activity coefficients (UNIFAC) model for ionic liquids (ILs) has become notably popular because of its simplicity and availability via modern process simulation softwares. In this work, new group binary interaction parameters (αmn and αnm) between CO (H2) and IL groups were obtained by correlating the solubility data in pure ILs at high temperatures (above 273.2 K) collected from the literature. the solubility of CO in [BMIM]+[BF4]?, [OMIM]+[BF4]?, [OMIM]+[Tf2N]?, and their mixtures, as well as that of H2 in [EMIM]+[BF4]?, [BMIM]+[BF4]?, [OMIM]+[Tf2N]?, and their mixtures, at temperatures from 243.2 to 333.2 K and pressures up to 6.0 MPa were measured. The UNIFAC model was observed to well predict the solubility in pure and mixed ILs at both high (above 273.2 K) and low (below 273.2 K) temperatures. Moreover, the selectivity of CO (or H2) to CO2 in ILs increases with decreasing temperature, indicating that low temperatures favor for gas separation. © 2014 American Institute of Chemical Engineers AIChE J 60: 4222–4231, 2014  相似文献   

2.
The new group binary interaction parameters of UNIFAC model (anm and amn) between CO2 and 22 ionic liquid (IL) groups were obtained by means of correlating the solubility data of CO2 in pure ILs at different temperatures (>273.2 K). We measured the CO2 solubility at low temperatures down to 243.2 K in pure ILs, i.e., [OMIM]+[BF4]? and [OMIM]+[Tf2N]?, and their equimolar amount of mixture, in order to fill the blank of solubility data at low temperatures and also to justify the applicability of UNIFAC model over a wider temperature range. It was verified that UNIFAC model can be used for predicting the CO2 solubility in pure ILs and in the binary mixture of ILs both at high (>273.2 K) and low temperatures (<273.2 K) effectively, as well as identifying the new structure–property relation. This is the first work to extend the UNIFAC model to IL‐CO2 systems. © 2013 American Institute of Chemical Engineers AIChE J 60: 716–729, 2014  相似文献   

3.
Since most ionic liquids (ILs) decompose before reaching their critical state, the experimental measurement of their critical properties are not possible. In this study, the critical temperatures, critical pressures and acentric factors of ten commonly investigated ILs were determined by making an optimum fit of the calculated vapor-liquid equilibrium data of binary mixtures of CO2+IL to the experimental values found in literature. For this purpose, the Peng-Robinson equation of state (PR EoS) and the differential evolution optimization method were used. The ILs considered were 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim][PF6]), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([emim][Tf2N]), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([bmim][Tf2N]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim][BF4]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF6]), 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([hmim][Tf2N]), 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF4]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF6]). To evaluate the ability of the determined parameters in predicting the phase behavior of systems other than the systems that were used for parameter optimization, both sets of parameters obtained in this work and that of Valderrama et al. were used to predict bubble-point pressures of CHF3+[bmim][PF6] (by using the PR EoS and the Soave-Redlich-Kwong equation of state. The bubble-point pressures of CO2+IL systems optimized in this study by the PR EoS were also determined using the Soave-Redlich-Kwong equation of state (SRK EoS). In addition, liquid densities of pure ILs were predicted using a generalized correlation proposed by Valderrama and Abu-Shark. In all cases, the various predicted properties of these ten ILs, were in better agreement with the experimental data, using the critical properties and acentric factor obtained in this study, compared to the values suggested by Valderrama et al.  相似文献   

4.
The present study centres on room‐temperature ionic liquids (ILs) as entrainers in extractive distillation of chloromethane/isobutane mixtures. The binary system, chloromethane/isobutene, is an azeotropic system. In this study, IL entrainers are shown to be able to break the azeotrope and, thus, assure the separation in the whole range of chloromethane/isobutane ratios. ILs formed from different cations and anions are considered and their influence on chloromethane/isobutane separation is explored. Among the ILs studied, those containing the trifluoromethanesulfonate ([CF3SO3]) or tricyanomethanide ([C(CN)3]) anion are demonstrated to exhibit an enhanced potential for chloromethane/isobutane separation compared to the corresponding ILs based on the bis(trifluoromethylsulfonyl)imide ([Tf2N]) anion. Moreover, the ILs enclosing these anions are cheaper than those with the [Tf2N] anion. Thus, the separation ability, solubility of chloromethane/isobutane mixtures, and costs of IL entrainers can be adjusted by the right choice of cations and anions.  相似文献   

5.
Novel processes involving ionic liquids with refrigerant gases have recently been developed. Here, the complete global phase behavior has been measured for the refrigerant gas, 1,1,1,2‐tetrafluoroethane (R‐134a) and 1‐n‐alkyl‐3‐methyl‐imidazolium ionic liquids with the anions hexafluorophosphate [PF6], tetrafluoroborate [BF4] and bis(trifluoromethylsulfonyl)imide [Tf2N] from ~0°C to 105°C and to 33 MPa. All of the systems studied were Type V from the classification scheme of Scott‐van Konynenburg with regions of vapor‐liquid equilibrium, miscible/critical regions, vapor‐liquid‐liquid equilibrium, and upper and lower critical endpoints (UCEP and LCEP). The effect of the alkyl chain length has been investigated, for ethyl‐([EMIm]), n‐butyl‐([BMIm]), and n‐hexyl‐([HMIm]). With increasing chain length, the temperature of the lower critical end points increases and pressure at the mixture critical points decrease. With a common cation, the temperature of the LCEP increased and the mixture critical point pressures decreased in the order of [BF4], [PF6], and [Tf2N]. © 2008 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

6.
This study explores the use of COSMO-RS model and Peng-Robinson (PR) equation of state (EoS) to predict the solubility of carbon dioxide (CO2) in specific ionic liquids (ILs). COSMO-RS was employed to estimate of CO2 solubility at atmospheric pressure in eight imidazolium-based ILs resulting from the combination of ethyl, butyl, hexyl, and octyl-imidazolium cations with two anions: bis(trifluoromethylsulfonyl)imide ([Tf2N]) and Trifluoromethanesulfonate ([TFO]). The results indicated relatively acceptable qualitative consistency between the experimental and predicted values. The PR EoS was employed at high pressure by tuning the interaction parameters to fit the experimental data reported in the literature. The model demonstrated excellent accuracy in predicting the solubility of CO2 at pressure values less than the critical pressure of CO2; however, at higher pressures, the calculated solubility diverged from the experimental values. Furthermore, the type of anion and cation used in the IL affected the performance of the PR EoS.  相似文献   

7.
Solubility results of carbon dioxide (CO2) in two ammonium-based ionic liquids, butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N4,1,1,1][Tf2N]) and methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ([N1,8,8,8][Tf2N]), are presented at pressures up to approximately 45 MPa and temperatures ranging from 303.15 K to 343.15 K. The solubility was determined by measuring bubble point pressures of mixtures of CO2 and ionic liquid using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. Sharp increase of equilibrium pressure was observed at high CO2 compositions. The CO2 solubility in ionic liquids increased with the increase of the total length of alkyl chains attached to the ammonium cation of the ionic liquids. The experimental data for the CO2+ionic liquid systems were correlated using the Peng-Robinson equation of state.  相似文献   

8.
The liquid thermal conductivity of the ionic liquid (IL), 1-hexyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide ([HMIm][Tf2N]), saturated with compressed vapor and supercritical carbon dioxide was measured over three isotherms (298.15, 323.15, and 348.15 K) and pressures up to approximately 20 MPa using a transient hot-wire technique. Pure [HMIm][Tf2N] thermal conductivity was also measured over a temperature range of 293.15–353.15 K at ambient pressure and with hydrostatic pressure to approximately 20 MPa. Literature vapor–liquid equilibrium data were used to predict the liquid CO2 composition at the conditions investigated. Initially, the liquid thermal conductivity slightly decreased with pressure/composition of CO2 followed by a gradual increase that is mainly attributed to hydrostatic pressure effects. Simple composition-based mixing rules for mixture properties are not qualitatively nor quantitatively accurate. These data could be used to engineer heat transfer equipment required for a variety of proposed IL applications in CO2 capture, absorption refrigeration, biphasic CO2/IL reaction platforms, etc.  相似文献   

9.
A modified version of a standard device for measuring gas adsorption and desorption isotherms and surface area of adsorbents and catalysts (ASAP (Accelerated Surface Area and Porosimetry System) 2020, Micromeritics USA) is used for the first time to measure gas solubilities (i.e., CO2) in low vapor pressure liquids (i.e., the IUPAC standard ionic liquid 1‐hexyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide ([C6mim][Tf2N])) in the Henry's law region. The solubility data are in very good agreement with the reported data in literature. Furthermore, the Henry's law constants are calculated from the solubility data and compared to the experimental data found in literature. The results from this study demonstrate that Micromeritics ASAP 2020 is a suitable apparatus for gas absorption by solvents with reduced vapor pressures. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2981–2986, 2017  相似文献   

10.
The gas drying technology with ionic liquids (ILs) was systematically studied ranging from the molecular level to industrial scale. The COSMO‐RS model was first used to screen the suitable IL and provide theoretical insights at the molecular level. Toward CO2 gas dehydration, we measured the CO2 solubility in single [EMIM][Tf2N] and in the [EMIM][Tf2N] + H2O mixture, as well as the vapor‐liquid equilibrium (VLE) of [EMIM][Tf2N] + H2O system, to justify the applicability of UNIFAC model. Based on the thermodynamic study, the rigorous equilibrium (EQ) stage mathematical model was established for process simulation. The gas drying experiment with IL was also performed and the water content in gas product can be reduced to 375 ppm. It was confirmed that a less flow rate of absorbent, a higher CO2 recovery ratio and a much lower energy consumption can be achieved with IL than with the conventional triethylene glycol (TEG). © 2017 American Institute of Chemical Engineers AIChE J, 64: 606–619, 2018  相似文献   

11.
1-氨丙基-3-甲基咪唑溴功能型离子液体对CO2的吸收性能   总被引:4,自引:4,他引:0  
阳涛  毕崟  郭开华 《化工学报》2012,63(10):3152-3157
1-氨丙基-3-甲基咪唑溴盐([APMIm])对CO2等酸性气体具有较强的选择性吸收性能,在能源及环保领域有较好应用前景。运用等容饱和吸收法在高压不锈钢反应釜中测得CO2在3种不同含水量的1-氨丙基-3-甲基咪唑溴盐水溶液中的溶解度数据,实验的温度范围为278.15~348.15 K,实验压力由低于大气压到最高6.5 MPa。实验结果表明,当水的质量分数达到60.84%以上,离子液体水溶液吸收CO2的能力和速率才会得到显著提升。尤其值得注意的是,在278.15 K、120 kPa达到吸收平衡时,CO2在含水质量分数为60.84%的1-氨丙基-3-甲基咪唑溴盐水溶液中的溶解度达到0.459 mol CO2 ·(mol IL)-1,接近理论最大吸收值0.5 mol CO2·(mol IL)-1。在较高压力下(3.9 MPa)最大CO2吸收量为1.894 mol CO2·(mol IL)-1。  相似文献   

12.
Novel functionalized ionic liquid (IL) combining an imidazolium‐based cation with branched alkyl chain bearing silyl group, 1‐methyl‐3‐(2‐methyl‐3‐(trimethylsilyl)propyl)imidazolium ([Si?C1?C3‐mim]+), and bis(trifluoromethylsulfonyl)imide ([NTf2]?) anion was synthesized and its thermophysical properties (density, viscosity, surface tension, surface entropy and enthalpy, thermal stability) were studied in a wide temperature range and compared with those of ILs having linear alkyl ([Cn‐mim][NTf2]) and siloxane ([(SiOSi)C1mim][NTf2]) side chains. It was found that at 25 °C [Si?C1?C3‐mim][NTf2] is a liquid with dynamic viscosity of 224 cP (224 mPa s) and density of 1.32 g cm?3. The presence of side branched alkyl chain with trimethylsilyl end‐group prevents crystallization of IL and leads to higher viscosities and lower densities in comparison with commonly known [Cn‐mim][NTf2] (n=2–4). As surface excess enthalpy was found to be in the lower end of the usual range of values for ILs, the interactions between silyl‐functionalized cation and [NTf2] anion can be considered as relatively weak. Finally, [Si?C1?C3‐mim][NTf2] was used for the preparation of polymer supported ionic liquid membranes (SILMs) and their CO2 and N2 permeation properties at 20 °C and 100 kPa were determined: permeability PCO2=311, PN2=12 Barrer, diffusivity DCO2=115×1012, DN2=227×1012 m2 s?1 and CO2/N2 permselectivity αCO2/N2=25.3.  相似文献   

13.
The extraction of lanthanides(III) from aqueous nitric acid solutions with N,N,N’,N’-tetra(n-octyl)diglycolamide (TODGA) and with mixtures of TODGA and the hydrophobic ionic liquid (IL) [C4mim][Tf2N] into 1,2-dichloroethane (DCE) has been investigated. The extraction efficiency of Ln(III) ions was greatly enhanced by the addition of a small amount of IL to an organic phase containing TODGA. The synergistic effect comes from the higher hydrophobicity of Ln(III) extracted species formed by TODGA and the weakly coordinating Tf2N? anions compared with those formed by TODGA and NO3? ions as the counter-anions. The partition of Tf2N? anions between the organic and aqueous phases is the dominant factor governing the extractability of lanthanides(III) with mixtures of TODGA and [C4mim][Tf2N]. The extraction of Ln(III) from aqueous nitric acid solutions by TODGA alone and its mixtures with [C4mim][Tf2N] into DCE can be described on the basis of the solvation extraction mechanism. However, in the extraction system with added [C4mim][Tf2N], the partition of Tf2N? between two immiscible phases and the interaction between HTf2N and TODGA in the organic phase should be taken into account. Possible reasons of the antagonistic effect in the TODGA–[C4mim][Tf2N] extraction system are discussed.  相似文献   

14.
Membrane technology has gained significant importance with the incorporation of ionic liquids into their structure. This work shows the influence of ionic liquid composition on the stability of PVC‐based polymer ionic liquid inclusion membranes (PILIMs) in aqueous solution. Among the ILs investigated, those membranes which contain between 20 and 30%w/w of the least soluble, [OMIM+][PF6?] and [OMIM+][Ntf2?], exhibit losses of IL lower than 10%. For both ILs, the amount immobilized was maximum for the membranes with 30%w/w of IL (0.0838 and 0.0832 g, respectively). On the contrary, the ionic liquid loss increases as its solubility in water increase, reaching 99.52% when PILIMs are prepared with 70%w/w of [OMIM+][BF4?]. The results demonstrate that the stability of PILIMs depends on the solubility of the IL in the surrounding phase and the specific interaction between the IL and the polymeric support for PVC‐to‐IL ratios higher than 30%w/w. © 2016 American Institute of Chemical Engineers AIChE J, 63: 770–780, 2017  相似文献   

15.
Ionic liquids have been found to provide a new platform for metal‐ and quinoline‐free decarboxylation of various N‐heteroaryl and aryl carboxylic acids under microwave irradiation in aqueous condition. The method was found to possess a wide substrate scope towards the synthesis of various pharmacologically and industrially important aromatic compounds including indoles, styrenes, stilbenes, and nitro‐ or hydroxyarene derivatives. The decarboxylation of indole and α‐phenylcinnamic acids proceeded well without addition of any catalyst in neat 1‐hexyl‐3‐methylimidazolium bromide ([hmim]Br) and 1‐methylimidazolium p‐toluenesulfonic acid ([Hmim]PTSA), respectively, while addition of a mild base like aqueous sodium hydrogen carbonate (NaHCO3) to [hmim]Br further improved the decarboxylation of hydroxylated cinnamic and aromatic acid substrates. The developed methodology not only precludes the usage of toxic metal/quinoline and harsh organic bases but also offers several inherent benefits like recyclability of reagent system, reduction in waste and hazards, short reaction time besides ease of product recovery.  相似文献   

16.
17.
Liquid crystals, elongated molecules with a structured liquid phase, may be used as new solvents for CO2 capture. However, no molecule has been found yet with optimal properties. Therefore, mixtures of two liquid crystals and CO2 are investigated. Also, the phase behavior of some binary subsystems of the investigated ternary systems is studied for comparison. In the mixtures investigated, 4,4′‐pentyloxycyanobiphenyl + 4,4′‐heptyloxycyanobiphenyl + CO2 and 4,4′‐propylcyclohexylbenzonitrile + 4,4′‐heptylcyclohexylbenzonitrile + CO2, the nematic phases form a nematic homogeneous solution and the solid phases form an eutectic system, leading to a material with improved properties for CO2 capture. Moreover, the ternary mixture of 4,4′‐propylcyclohexylbenzonitrile + 4,4′‐heptylcyclohexylbenzonitrile + CO2 showed an increased solubility of CO2 compared with the binary subsystems. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2977–2984, 2015  相似文献   

18.
The phase equilibria of thiophene in 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([Bmim][BF4]) is calculated by Monte Carlo simulation in Gibbs ensemble using a united atom force field. The liquid density of studied ionic liquid and the vapor pressure of thiophene in [Bmim][BF4] were compared with corresponding experimental data reported in the literature, and a good agreement was obtained. In order to describe the solubility of thiophene in this ionic liquid, we have calculated the radial distribution functions and spatial distribution functions of thiophene/IL mixtures to study the interaction of thiophene with cations and anions of [Bmim][BF4] in the liquid phase. The local composition concept in fluid was also examined to give further insight into the liquid structure. The results show that thiophene is well organized around the terminal carbon atom of the butyl or methyl chain attached to the imidazolium ring of cations and tends to adopt a symmetrically distribution on the anions. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3916–3924, 2014  相似文献   

19.
Room temperature task-specific ionic liquids (TSIL) of 1-(2-hydroxylethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Im21OH][Tf2N]) or 2-hydroxyethyl(dimethyl)-isopropylammonium bis(trifluoromethylsulfonyl)imide ([Nip,211OH][Tf2N]) with superbase, 1,8-diazabicyclo-[5.4.0]undec-7-ene (DBU), has been combined with Torlon® powders (<106 um) to simulate the potential benefits of integrating equimolar amounts of ionic liquids and superbase into hollow fibers in terms of both sorption uptake and kinetics. Approximately 44 wt% of an equimolar [Im21OH][Tf2N]-DBU in Torlon® powders achieved CO2 sorption uptake of 0.57 mmol CO2/g at a CO2 feed pressure of 0.1 atm and at 35 °C. Similar amounts of an equimolar [Nip,211OH][Tf2N]-DBU in Torlon® powders showed CO2 sorption uptake of 0.45 mmol CO2/g at the same condition. The half time (time to reach Mt/M of 0.5) for Torlon®, Torlon®(62 mg)/[Im21OH][Tf2N]-DBU(48 mg) and [Im21OH][Tf2N]-DBU at low feed pressure (~1.5 psia CO2) was approximately 4, 55, and 298 s, respectively demonstrating that imbibing an equimolar [Im21OH][Tf2N]-DBU into polymer powders substantially improved sorption kinetics compared to the neat counterpart. The sorption half time is expected to be even shorter for fibers with smaller characteristic polymer morphology domains. The current study also demonstrates a new experimental approach to characterize CO2 sorption in an equimolar mixture of ionic liquids and superbase.  相似文献   

20.
Liquid–liquid extraction is the most common method for extraction of aromatics from their mixtures with aliphatic hydrocarbons. An ionic liquid (IL) 1‐butyl‐1‐methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMpyr][NTf2] was tested as solvent for this separation. The liquid–liquid equilibria (LLE) of the ternary mixtures heptane + benzene, or toluene, or ethylbenzene + [BMpyr][NTf2] were carried out at 298.15 K. The solvent ability of the IL was evaluated in terms of solute distribution ratio and selectivity. The results were compared with those previously reported for the extraction of aromatics from its mixtures with heptane by using ILs. The conventional process using sulfolane as solvent was discussed. The experimental LLE data were correlated by non‐random two liquid equation. A proposal of extraction process with this IL as solvent is simulated by conventional software and the results are shown. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号