首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The aim of the present study was to evaluate the effect of grapefruit juice on urinary 6 beta-hydroxycortisol and cortisol excretion in healthy subjects. 2. The ratio of 6 beta-hydroxycortisol/cortisol was significantly decreased (P = 0.036) in the 0-4 h fraction of urine after ingestion of grapefruit juice, but not in the 4-24 h fraction (P = 0.218) or for the compiled data, fraction 0-24 h (P = 0.114). 3. These results indicate that endogenous cortisol metabolism may not only be of hepatic origin, but may also be dependent on the metabolic capacity of cytochrome P450 IIIA (CYP3A) in the gut mucosa. 4. This finding may cast further doubts of the usefulness of the 6 beta-hydroxycortisol/cortisol ratio as an indicator of hepatic CYP3A activity.  相似文献   

2.
Ritonavir is 1 of the 4 potent synthetic HIV protease inhibitors, approved by the US Food and Drug Administration (FDA) between 1995 and 1997, that have revolutionised HIV therapy. The extent of oral absorption is high and is not affected by food. Within the clinical concentration range, ritonavir is approximately 98 to 99% bound to plasma proteins, including albumin and alpha 1-acid glycoprotein. Cerebrospinal fluid (CSF) drug concentrations are low in relation to total plasma concentration. However, parallel decreases in the viral burden have been observed in the plasma, CSF and other tissues. Ritonavir is primarily metabolised by cytochrome P450 (CYP) 3A isozymes and, to a lesser extent, by CYP2D6. Four major oxidative metabolites have been identified in humans, but are unlikely to contribute to the antiviral effect. About 34% and 3.5% of a 600 mg dose is excreted as unchanged drug in the faeces and urine, respectively. The clinically relevant t1/2 beta is about 3 to 5 hours. Because of autoinduction, plasma concentrations generally reach steady state 2 weeks after the start of administration. The pharmacokinetics of ritonavir are relatively linear after multiple doses, with apparent oral clearance averaging 7 to 9 L/h. In vitro, ritonavir is a potent inhibitor of CYP3A. In vivo, ritonavir significantly increases the AUC of drugs primarily eliminated by CYP3A metabolism (e.g. clarithromycin, ketoconazole, rifabutin, and other HIV protease inhibitors, including indinavir, saquinavir and nelfinavir) with effects ranging from an increase of 77% to 20-fold in humans. It also inhibits CYP2D6-mediated metabolism, but to a significantly lesser extent (145% increase in desipramine AUC). Since ritonavir is also an inducer of several metabolising enzymes [CYP1A4, glucuronosyl transferase (GT), and possibly CYP2C9 and CYP2C19], the magnitude of drug interactions is difficult to predict, particularly for drugs that are metabolised by multiple enzymes or have low intrinsic clearance by CYP3A. For example, the AUC of CYP3A substrate methadone was slightly decreased and alprazolam was unaffected. Ritonavir is minimally affected by other CYP3A inhibitors, including ketoconazole. Rifampicin (rifampin), a potent CYP3A inducer, decreased the AUC of ritonavir by only 35%. The degree and duration of suppression of HIV replication is significantly correlated with the plasma concentrations. Thus, the large increase in the plasma concentrations of other protease inhibitors when coadministered with ritonavir forms the basis of rational dual protease inhibitor regimens, providing patients with 2 potent drugs at significantly reduced doses and less frequent dosage intervals. Combination treatment of ritonavir with saquinavir and indinavir results in potent and sustained clinical activity. Other important factors with combination regimens include reduced interpatient variability for high clearance agents, and elimination of the food effect on the bioavailibility of indinavir.  相似文献   

3.
Since its introduction in 1987, zidovudine monotherapy has been the treatment of choice for patients with HIV infection. Unfortunately it has been established that the beneficial effects of zidovudine are not sustained due to the development of resistant viral strains. This has led to the strategy of combination therapy, and in 1995 treatment with zidovudine plus didanosine, or zidovudine plus zalcitabine, was demonstrated to be more effective than zidovudine monotherapy in preventing disease progression and reducing mortality in patients with HIV disease. Recent work demonstrates an even greater antiviral effect from triple therapy with 2 nucleosides, zidovudine plus zalcitabine with the addition of saquinavir, a new protease inhibitor drug. The HIV protease enzyme is responsible for the post-translational processing of gag and gag-pol polyprotein precursors, and its inhibition by drugs such as saquinavir, ritonavir, indinavir and VX-478 results in the production of non-infectious virions. As resistance may also develop to the protease inhibitors they may be used in combination, and future strategies may well include quadruple therapy with 2 nucleoside analogues plus 2 protease inhibitors. Administration of protease inhibitors alone or in combination with other drugs does raise a number of important pharmacokinetic issues for patients with HIV disease. Some protease inhibitors (e.g. saquinavir) have kinetic profiles characterised by reduced absorption and a high first pass effect, resulting in poor bioavailability which may be improved by administrating with food. Physiological factors including achlorhydria, malabsorption and hepatic dysfunction may influence the bioavailability of protease inhibitors in HIV disease. Protease inhibitors are very highly bound to plasma proteins (> 98%), predominantly to alpha 1-acid glycoprotein. This may influence their antiviral activity in vitro and may also predispose to plasma protein displacement interactions. Such interactions are usually only of clinical relevance if the metabolism of the displaced drug is also inhibited. This is precisely the situation likely to pertain to the protease inhibitors, as ritonavir may displace other protease inhibitor drugs, such as saquinavir, from plasma proteins and inhibit their metabolism. Protease inhibitors are extensively metabolised by the cytochrome P450 (CYP) enzymes present in the liver and small intestine. In vitro studies suggest that the most influential CYP isoenzyme involved in the metabolism of the protease inhibitors is CYP3A, with the isoforms CYP2C9 and CYP2D6 also contributing. Ritonavir has an elimination half-life (t1/2 beta) of 3 hours, indinavir 2 hours and saquinavir between 7 and 12 hours. Renal elimination is not significant, with less than 5% of ritonavir and saquinavir excreted in the unchanged form. As patients with HIV disease are likely to be taking multiple prolonged drug regimens this may lead to drug interactions as a result of enzyme induction or inhibition. Recognised enzyme inducers of CYP3A, which are likely to be prescribed for patients with HIV disease, include rifampicin (rifampin) [treatment of pulmonary tuberculosis], rifabutin (treatment and prophylaxis of Mycobacterium avium complex), phenobarbital (phenobarbitone), phenytoin and carbamazepine (treatment of seizures secondary to cerebral toxoplasmosis or cerebral lymphoma). These drugs may reduce the plasma concentrations of the protease inhibitors and reduce their antiviral efficacy. If coadministered drugs are substrates for a common CYP enzyme, the elimination of one or both drugs may be impaired. Drugs which are metabolised by CYP3A and are likely to be used in the treatment of patients with HIV disease include the azole antifungals, macrolide antibiotics and dapsone; therefore, protease inhibitors may interact with these drugs. (ABSTRACT TRUNCATED)  相似文献   

4.
Amprenavir (141W94, VX-478, KVX-478) is metabolized primarily by CYP3A4 (cytochrome P450 3A4) in recombinant systems and human liver microsomes (HLM). The effects of ketoconazole, terfenadine, astemizole, rifampicin, methadone, and rifabutin upon amprenavir metabolism were examined in vitro using HLM. Ketoconazole, terfenadine, and astemizole were observed to inhibit amprenavir depletion, consistent with their known specificity for CYP3A4. The HIV protease inhibitors, indinavir, saquinavir, ritonavir, and nelfinavir, were included in incubations containing amprenavir to examine the interactions of HIV protease inhibitors in vitro. The order of amprenavir metabolism inhibition in human liver microsomes was observed to be: ritonavir > indinavir > nelfinavir > saquinavir. The Ki value for amprenavir-mediated inhibition of testosterone hydroxylation in human liver microsomes was found to be approximately 0.5 microM. Studies suggest that amprenavir inhibits CYP3A4 to a greater extent than saquinavir, and to a much lesser extent than ritonavir. Amprenavir, nelfinavir, and indinavir appear to inhibit CYP3A4 to a moderate extent, suggesting a selected number of coadministration restrictions.  相似文献   

5.
Coadministration with the human immunodeficiency virus (HIV) protease inhibitor ritonavir was investigated as a method for enhancing the levels of other peptidomimetic HIV protease inhibitors in plasma. In rat and human liver microsomes, ritonavir potently inhibited the cytochrome P450 (CYP)-mediated metabolism of saquinavir, indinavir, nelfinavir, and VX-478. The structural features of ritonavir responsible for CYP binding and inhibition were examined. Coadministration of other protease inhibitors with ritonavir in rats and dogs produced elevated and sustained plasma drug levels 8 to 12 h after a single dose. Drug exposure in rats was elevated by 8- to 46-fold. A > 50-fold enhancement of the concentrations of saquinavir in plasma was observed in humans following a single codose of ritonavir (600 mg) and saquinavir (200 mg). These results indicate that ritonavir can favorably alter the pharmacokinetic profiles of other protease inhibitors. Combination regimens of ritonavir and other protease inhibitors may thus play a role in the treatment of HIV infection. Because of potentially substantial drug level increases, however, such combinations require further investigation to establish safe regimens for clinical use.  相似文献   

6.
The protease inhibitors, ritonavir, indinavir and saquinavir, the most potent anti-HIV drugs developed to date, interact with many drugs by competing for CYP3A4, an enzyme central to the metabolism of a wide variety of compounds. Human liver microsomes were used to compare inhibition by these three protease inhibitors. The inhibition was the greatest with ritonavir and indinavir and less potent with saquinavir.  相似文献   

7.
The 2-isopropyl thiazolyl group is a highly optimized P3 ligand for C2 symmetry-based HIV protease inhibitors, as exemplified in the drug ritonavir. Here we report that incorporation of this P3 ligand into a piperazine hydroxyethylamine series also yielded novel, highly potent inhibitors. In tissue culture assays, the presence of human serum was less deleterious to the activity of these inhibitors than to that of ritonavir. Furthermore, potent activity against ritonavir resistant HIV was observed.  相似文献   

8.
The HIV-1 protease inhibitor ritonavir (ABT-538) undergoes cytochrome P450-mediated biotransformation in human liver microsomes to three major metabolites, Ml, M2 and M11, with wide interindividual variation in the rates of metabolite formation. The structures of these metabolites were determined with the use of electrospray ionization mass spectrometry. Chemical inhibition, metabolic correlation, immunoinhibition and metabolism by microsomes derived from specific CYP cDNA-transfected B-lymphoblastoid cell lines indicated that the CYP3A subfamily of enzymes was the major contributor to the formation of M1 and M11, whereas both CYP3A and CYP2D6 contributed to the formation of M2. None of the typical CYP3A substrates/inhibitors (e.g., ketoconazole, troleandomycin) were able to completely inhibit ritonavir metabolism, even at high concentrations. Ritonavir was found to be a potent inhibitor of CYP3A-mediated biotransformations (nifedipine oxidation, IC50) = 0.07 microM; 17alpha-ethynylestradiol 2-hydroxylation, IC50 = 2 microM; terfenadine hydroxylation, IC50 = 0.14 microM). Ritonavir was also found to be an inhibitor of the reactions mediated by CYP2D6 (IC50 = 2.5 microM) and CYP2C9/10 (IC50 = 8.0 microM). The results of this study indicate the potential for in vivo inhibition of the metabolism by ritonavir of drugs that are CYP3A, CYP2D6 and, to a lesser extent, CYP2C9/10 substrates.  相似文献   

9.
Biliary, plasma, and urinary disposition of paclitaxel and paclitaxel metabolites were determined simultaneously in a patient with percutaneous biliary drain. The complete chemical structures of the major metabolites were established by mass spectrometry and NMR spectroscopy. A nonlinear elimination model was indicated by the fact that the rate of biliary excretion of paclitaxel rose as plasma concentrations fell. Dihydroxypaclitaxel was the predominant biliary metabolite, in contrast to the barely detectable levels in two previous patients. This derivative results from hydroxylation at the C6 position of the taxane ring and at the phenyl C3'-position on the C13 side chain mediated by cytochrome P450 2C8 and 3A4, respectively. In line with this mechanism, the two other main metabolites corresponded to 6alpha-hydroxypaclitaxel and to the paclitaxel derivative hydroxylated in the para-position on the phenyl ring at the C3'-position of the C13. A high CYP3A4 activity in the patient is consistent with the repeated administration of methylprednisolone for 14 days before paclitaxel treatment, a compound known to induce the CYP3A isoform, and with the increased ratio of 6beta-hydroxycortisol/cortisol in urine, an index of CYP3A activity. These findings emphasize the influence of pretreatment with corticoids on the disposition of paclitaxel.  相似文献   

10.
STUDY OBJECTIVE: To characterize cytochrome P450 (CYP) 3A4 activity in premenopausal and postmenopausal women by evaluating the urinary 6-beta-hydroxycortisol:cortisol ratio. DESIGN: Prospective study SUBJECTS: Thirteen premenopausal and 13 postmenopausal women who were healthy and not receiving drugs known to affect CYP3A4 activity INTERVENTIONS: Beginning on day 2 of menses, premenopausal women collected first morning urine samples every other day for a complete menstrual cycle. Postmenopausal women collected first morning urine every other day for 28 days. MEASUREMENTS AND MAIN RESULTS: Mean weekly 6-beta-hydroxycortisol:cortisol ratios did not differ during the phase (week) of the menstrual cycle. Daily ratios did not differ in postmenopausal women. No difference between premenopausal and postmenopausal women was found on comparing overall median ratios. CONCLUSION: Cytochrome P450 3A4 activity as measured by 6-beta-hydroxy cortisol:cortisol ratio did not differ by week of menstrual cycle, suggesting no menstrual cycle-related changes. Menopause does not appear to be associated with differences in CYP3A4 activity, compared with premenopause.  相似文献   

11.
12.
The potential interaction between fluoxetine, a known inhibitor of cytochrome P-450 isoform 2D6 (CYP2D6), and ritonavir, a human immunodeficiency virus type 1 protease inhibitor, was evaluated in this open-label study. Sixteen male and female subjects ranging in age from 18 to 40 years completed the study. Subjects received single doses of 600 mg of ritonavir on days 1 and 10. On study days 3 to 10, all subjects received 30 mg of fluoxetine every 12 h for a total of 16 consecutive doses. Serial blood samples for determination of ritonavir concentrations in plasma were collected after the administration of ritonavir on days 1 and 10. A limited number of blood samples for determination of fluoxetine and norfluoxetine concentrations were collected after administration of the morning dose on day 10. A statistically significant increase (19%) in the ritonavir area under the concentration-time curve (AUC) was observed with concomitant fluoxetine administration, with individual changes ranging from -12 to +56%. The change in the ritonavir AUC with concomitant fluoxetine administration was positively correlated with the norfluoxetine 24-h AUC (AUC24) (r2 = 0.42), the norfluoxetine/fluoxetine AUC24 ratio (r2 = 0.53), and the fluoxetine elimination rate constant (r2 = 0.65), with larger increases in the ritonavir AUC tending to occur with higher norfluoxetine concentrations and higher fluoxetine elimination rate constants. The effect of fluoxetine appeared to be larger in subjects with the CYP2D6 wt/wt genotype. There was little or no effect on the time to maximum drug concentration (Cmax) in serum, Cmax, and the elimination rate constant of ritonavir with concomitant fluoxetine administration. Considering the magnitude of the change observed, no ritonavir dose adjustment is recommended during concomitant fluoxetine administration.  相似文献   

13.
Saquinavir is a HIV protease inhibitor used in the treatment of patients with acquired immunodeficiency syndrome, but its use is limited by low oral bioavailability. The potential of human intestinal tissue to metabolize saquinavir was assessed in 17 different human small-intestinal microsomal preparations. Saquinavir was metabolized by human small-intestinal microsomes to numerous mono- and dihydroxylated species with K(M) values of 0.3-0.5 microM. The major metabolites M-2 and M-7 were single hydroxylations on the octahydro-2-(1H)-isoquinolinyl and (1,1-dimethylethyl)amino groups, respectively. Ketoconazole and troleandomycin, selective inhibitors of cytochrome P4503A4 (CYP3A4), were potent inhibitors for all oxidative metabolites of saquinavir. The cytochrome P450-selective inhibitors furafylline, fluvoxamine, sulfaphenazole, mephenytoin, quinidine, and chlorzoxazone had little inhibitory effect. All saquinavir metabolites were highly correlated with testosterone 6beta-hydroxylation and with each other. Human hepatic microsomes and recombinant CYP3A4 oxidized saquinavir to the same metabolic profile observed with human small-intestinal microsomes. Indinavir, a potent HIV protease inhibitor and a substrate for human hepatic CYP3A4, was a comparatively poor substrate for human intestinal microsomes and inhibited the oxidative metabolism of saquinavir to all metabolites with a Ki of 0.2 microM. In addition, saquinavir inhibited the human, small-intestinal, microsomal CYP3A4-dependent detoxication pathway of terfenadine to its alcohol metabolite with a Ki value of 0.7 microM. These data indicate that saquinavir is metabolized by human intestinal CYP3A4, that this metabolism may contribute to its poor oral bioavailability, and that combination therapy with indinavir or other protease inhibitors may attenuate its low relative bioavailability.  相似文献   

14.
Protease inhibitors are a new class of drugs which has demonstrated activity for the treatment of HIV infection. The function of the HIV protease is to split a polyprotein to create smaller proteins which will be incorporated in the structure of the virus. The eight cleavage sites of the polyprotein constitute a template for the synthesis of potential inhibitors. Today, only inhibitors of the Phe-Pro cleavage have shown an antiproteinase activity specific for HIV. Clinical trials in HIV infection with saquinavir, indinavir, and ritonavir have demonstrated a decrease in viral load measured by plasma HIV-RNA PCR and an increase in CD4 lymphocyte counts. The use of protease inhibitors leads to a more or less rapid selection of mutant resistant viruses. However, these new drugs, either used alone or in combination, constitute a new therapeutic approach for the treatment of HIV disease.  相似文献   

15.
In this review the clinical pharmacology of HIV protease inhibitors, a new class of antiretroviral drugs, is discussed. After considering HIV protease function and structure, the development of inhibitors of HIV protease is presented. Three protease inhibitors are reviewed in more detail: saquinavir, indinavir, and ritonavir. Clinical trial results with these agents are evaluated. Furthermore, adverse effects, resistance, dosage and administration, clinical pharmacokinetics, pharmacokinetic-pharmacodynamic relationships, and drug interactions are discussed.  相似文献   

16.
OBJECTIVE: To determine the rate of virological treatment failure with protease inhibitor therapy in unselected patients and to assess underlying risk factors. DESIGN AND SETTING: Retrospective study in two German tertiary care treatment centres. PATIENTS: A total of 198 HIV-infected patients treated with protease inhibitors in 1996. MAIN OUTCOME MEASURES: Levels of HIV RNA 1-6 months after start of treatment; definition of treatment failure of < 1 log10 reduction in plasma HIV RNA within 6 months after starting protease inhibitor therapy; multivariate analysis of risk factors for treatment failures. RESULTS: A total of 226 treatment episodes with protease inhibitors were evaluable (saquinavir, 83; ritonavir, 47; indinavir, 96). The rate of virological treatment failure was 44% (saquinavir, 64%; ritonavir, 38%; indinavir, 30%). In a multivariate analysis, the following independent risk factors for virological failure were found: CD4 cell count, pretreatment with antiretroviral drugs (number), and protease inhibitor (compound). The relative risk reduction for each CD4 cell count increase was 0.997 (P = 0.012), 2.64 for pretreatment with one or two drugs versus no drug (P = 0.05), 2.97 for pretreatment with more than two drugs versus no drug (P = 0.05), and 4.62 for treatment with saquinavir versus indinavir (P = 0.001). CONCLUSION: An unexpectedly high rate of virological treatment failure of protease inhibitor therapy was found in an unselected cohort of HIV-infected patients. Response to antiretroviral combination therapy in normal clinical practice may considerably differ from results of randomized clinical trials. Further studies are warranted to find optimal treatment strategies for both initial and salvage therapy.  相似文献   

17.
Pharmacokinetic drug interactions with viral protease inhibitors are of potential clinical importance. An in vitro model was applied to the quantitative identification of possible interactions of protease inhibitors with substrates of cytochrome P450-2D6. Biotransformation of desipramine (DMI) to hydroxydesipramine (OH-DMI), an index reaction used to profile activity of human cytochrome P450-2D6, was studied in vitro using human liver microsomes. Quinidine and four viral protease inhibitors currently used to treat human immunodeficiency virus infection were tested as chemical inhibitors in this system. Formation of OH-DMI from DMI was consistent with Michaelis-Menten kinetics, having a mean Km value of 11.7 microM (range: 9.9-15.3 microM). Quinidine, a highly potent and relatively selective inhibitor of P450-2D6, strongly inhibited OH-DMI formation with an apparent competitive mechanism, having a mean inhibition constant of 0.16 microM (range: 0.13-0.18 microM). All four protease inhibitors impaired OH-DMI formation; the pattern was consistent with a mixed competitive-noncompetitive mechanism. Mean inhibition constants (small numbers indicating greater inhibiting potency) were as follows: ritonavir, 4.8 microM; indinavir, 15.6 microM; saquinavir, 24.0 microM; nelfinavir, 51.9 microM. In a clinical pharmacokinetic study, coadministration of ritonavir with DMI inhibited DMI clearance by an average of 59%. The in vitro findings, together with observed plasma ritonavir concentrations, provided a reasonable quantitative forecast of this interaction, whereas estimated unbound plasma or intrahepatic ritonavir concentrations yielded poor quantitative forecasts. Thus the in vitro model correctly identifies ritonavir as a potent and clinically important inhibitor of human P450-2D6. Other protease inhibitors may also inhibit 2D6 activity in humans, but with lower potency than ritonavir.  相似文献   

18.
OBJECTIVE: To study the relationship between the CD4+ cell response after initiation of protease inhibitors and the occurrence of opportunistic infections and survival. DESIGN: Prospective observational cohort study. METHODS: HIV-1-seropositive subjects followed-up in HIV centres of Bordeaux University Hospital, Southwest France who were prescribed at least one available protease inhibitor between January and December 1996 were included in this analysis. A Cox model estimated the independent effect of baseline covariates and CD4+ cell response, considered as a time-dependent covariate, on the occurrence of new AIDS-defining opportunistic infection, new AIDS-defining events, new AIDS-defining opportunistic infection or death. RESULTS: A total of 556 HIV-positive patients were prescribed at least one protease inhibitor: 34% saquinavir, 52% indinavir, and 14% ritonavir. Median CD4+ cell count at baseline was 95 x 10(6)/l and mean plasma HIV RNA was 5.0 log10 copies/ml. After a median follow-up of 230 days, 65 patients experienced a new episode of opportunistic infection, 79 patients experienced at least one AIDS-defining event, and 24 had died. On average, the increase in CD4+ cell count was 42 x 10(6)/l (SD, 74) after a median of 49 days. In the multivariate analysis of opportunistic infection or death, each 50% higher CD4+ cell count at baseline was associated with a 23% reduction [95% confidence interval (CI), 14-30] of risk. Each 50% increase in CD4+ cell count during follow-up was associated with a 9% reduction (95% CI, 2-15) of risk, adjusted for the presence of AIDS prior to protease inhibitor therapy (hazard ratio, 3.76 versus absence of AIDS; P < 0.01) and haemoglobin level (hazard ratio, 0.48 if > 11 g/dl versus <11 g/dl; P < 0.01). CONCLUSION: Our results show, at least indirectly, how protease inhibitors might produce clinical stabilization. This result may be due to improved functionality of CD4+ cells in patients started on protease inhibitors.  相似文献   

19.
During the cooking of meats, several highly mutagenic heterocyclic amines (HCAs) are produced. Three HCAs, IQ, MeIQx, and PhIP have been under study for carcinogenicity in cynomolgus monkeys, and to date, IQ has been shown to be a potent hepatocarcinogen. Concomitantly, the metabolic processing of these HCAs has been examined. Metabolism studies show that the potent hepatocarcinogenicity of IQ is associated with the in vivo metabolic activation of IQ via N-hydroxylation and the formation of DNA adducts. In monkeys undergoing carcinogen bioassay with IQ, N-hydroxylation was confirmed by the presence of the N-hydroxy-N-glucuronide conjugate of IQ in urine. The N-hydroxylation of IQ appears to be carried out largely by hepatic CYP3A4 and/or CYP2C9/10, and not by CYP1A2, an isoform not expressed in liver of this species. Notably MeIQx is poorly activated in cynomolgus monkeys and lacks the potency of IQ to induce hepatocellular carcinoma after a 5-year dosing period. The poor activation of MeIQx appears to be due to the lack of constitutive expression of CYP1A2 and an inability of other cytochromes P450, such as CYP3A4 and CYP2C9/10, to N-hydroxylate the quinoxalines. MeIQx is detoxified in monkeys largely by conjugation with glucuronide at the N-1 position. Although the carcinogenicity of PhIP is not yet known, the metabolic data suggest that PhIP will be carcinogenic in this species. PhIP is metabolically activated in vivo in monkeys by N-hydroxylation, as discerned by the presence of the N-hydroxy-N-glucuronide conjugate in urine, bile, and plasma. PhIP also produces DNA adducts that are widely distributed in tissues. The results from these studies support the importance of N-hydroxylation in the carcinogenicity of HCAs in nonhuman primates and by analogy, the importance of this metabolic activation step in the possible carcinogenicity of dietary HCAs in humans.  相似文献   

20.
Resistance of HIV-1 to protease inhibitors has been associated with changes at residues Val82 and Ile84 of HIV-1 protease (HIV PR). Using both an enzyme assay with a peptide substrate and a cell-based infectivity assay, we examined the correlation between the inhibition constants for enzyme activity (Ki values) and viral replication (IC90 values) for 5 active site mutants and 19 protease inhibitors. Four of the five mutations studied (V82F, V82A, I84V, and V82F/I84V) had been identified as conferring resistance during in vitro selection using a protease inhibitor. The mutant protease genes were expressed in Escherichia coli for preparation of enzyme, and inserted into the HXB2 strain of HIV for test of antiviral activity. The inhibitors included saquinavir, indinavir, nelfinavir, 141W94, ritonavir (all in clinical use), and 14 cyclic ureas with a constant core structure and varying P2, P2' and P3, P3' groups. The single mutations V82F and I84V caused changes with various inhibitors ranging from 0.3- to 86-fold in Ki and from 0.1- to 11-fold in IC90. Much larger changes compared to wild type were observed for the double mutation V82F/I84V both for Ki (10-2000-fold) and for IC90 (0.7-377-fold). However, there were low correlations (r2 = 0.017-0.53) between the mutant/wild-type ratio of Ki values (enzyme resistance) and the mutant/wild-type ratio of viral IC90 values (antiviral resistance) for each of the HIV proteases and the viruses containing the identical enzyme. Assessing enzyme resistance by "vitality values", which adjust the Ki values with the catalytic efficiencies (kcat/Km), caused no significant improvement in the correlation with antiviral resistance. Therefore, our data suggest that measurements of enzyme inhibition with mutant proteases may be poorly predictive of the antiviral effect in resistant viruses even when mutations are restricted to the protease gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号