首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compositions along the Ca2SiO4–Ca3(PO4)2 join were hydrated at 90°C. Mixtures containing 15, 38, 50, 80, and 100 mol% Ca3(PO4)2 were fired at 1500°C, forming nagelschmidtite + a 1-CaSiO4, A -phase and silicocarnotite and a -Ca3(PO4)2, respectively. Hydration of these produces hydroxylapatite regardless of composition. Calcium silicate hydrate gel is produced when Ca2SiO4≠ 0 and portlandite when Ca2SiO4 is >50%. Relative hydration reactivities are a -Ca3(PO4)2 > nagelschmidtite > α 1-Ca2SiO4 > A -phase > silicocarnotite. Hydration in the presence of silica or lime influences the amount of portlandite produced. Hydration in NaOH solution produces 14-A tobermorite rather than calcium silicate hydrate gel.  相似文献   

2.
New data obtained on the join Ca2SiO4-CaMgSiO4 established a limit of crystalline solubility of Mg in α-Ca2SiO4 corresponding to the composition Ca1.90Mg0.10SiO4 at 1575°C. The α-α'Ca2SiO4 inversion temperature is lowered from 1447° to 1400°C by Mg substitution in the lattice. α'-Ca2SiO4 takes Mg into its lattice up to the composition Ca1.94Mg0.06SiO4 at 1400°C and to Ca1.96Mg0.04SiO4 at 900°C. A new phase (T) reported previously by Gutt, with the approximate composition Ca1.70Mg0.30SiO4, was stable between 979° and 1381°C, and should be stable at liquidus temperatures in multicomponent systems involving CaO–MgO–SiO2.  相似文献   

3.
Phase equilibrium data resulting from quenching experiments are presented for the ternary system CaO-MnO-SiO2. An atmosphere of controlled oxygen pressure having Po2, ≅ 10−6 atm at 1555°C was used to maintain the manganese in the divalent state. The ternary liquidus surface is largely one of low-lying liquidus temperatures. Three ternary liquidus minima dominate this surface. These have the following compositions (in weight percent CaO, MnO, and SiO2): (a) 5.0, 48.4, and 46.6%, (b) 17.5, 45.0, and 37.5%, and (c) 15.0, 53.0, and 32.0%. Temperatures measured at these points are (a) 1265° C, (b) 1195°C, and (c) 1204°C. Isofracts of the quenched glasses are presented. Crystallization paths of ternary mixtures are represented by a series of fractionation curves and selected isothermal planes. Partition of manganese between coexisting pairs of crystalline phases (e.g., meta-silicate, olivine, and (Ca,Mn)O solid solutions) favors concentration of manganese in the more basic phase. Subsolidus equilibria involving these phases and also Ca3Si2O7 and Ca3SiO5 are discussed. Ca3Si2O7 and Ca3SiO6 do not admit any appreciable amounts of Mn++ into their lattices.  相似文献   

4.
Results are presented of a study in air of mixtures in the system CaO-Cr2O3-SiO2. The phase equilibrium diagram shows relations at liquidus temperatures for all but the high-lime part of the system. In this omitted part chromium in the mixtures oxidizes in air to higher valence forms. The compound Ca3Cr2Si3O12 (uvarovite) occurs at subsolidus temperatures, decomposing at 1370°C. to α-CaSiO3 and Cr2O3. The inhibiting action of chromium oxide on the inversion of high-temperature forms of Ca2SiO4 to the low-temperature γ-Ca2SiO4 is discussed in the light of new data. Evidence is presented for the existence of a pentavalent chromium compound, Ca3(CrO4)2, having solid-solution relations with Ca3SiO4.  相似文献   

5.
A complete solid-solution series exists between diopside (CaMgSi2O6) and its nickel analogue, "niopside"(CaNiSi2O6). Activity–composition relations within this solid solution, and the stability of the end member CaNiSi2O6, have been determined by equilibrating CaNiSi2O6 with SiO2, CaSiO3, and metallic Ni in atmospheres of known oxygen pressures. Within limits of accuracy of the experiments, the solution is ideal at 1350°C. From the experimental data obtained in the present investigation, the standard free energy (Δ G °) of formation of CaNiSi2O6 according to the equation CaO + NiO + 2SiO2= CaNiSi2O6 is calculated to be Δ G °=−165862 + 42.40 T J. Experiments in the system CaO–NiO–SiO2 have shown that the nickel analogue of the phase pseudo-enstatite (MgSiO3) is unstable with respect to SiO2 and nickel olivine (Ni2SiO4), and the nickel analogues of the phases akermanite (Ca2MgSi2O7) and monticellite (CaMgSiO4) are unstable relative to the phase assemblage pseudo-wollastonite (CaSiO3) plus NiO. In the system CaO–MgO–NiO–SiO2, however, substitution of Ni for Mg in these phases was observed. The percentage substitution of Ni for Mg in the phases is given in parentheses: diopside (100%), olivine (100%), enstatite (18%), akermanite (20%), and monticellite (57%).  相似文献   

6.
The growth behavior, time of nucleation, and morphology of Ca(OH)2 crystals formed during the hydration of Ca3SiO5, at 15°, 25°, and 35°C at water-solid ratios ( w/s ) from 0.3 to 5.0 were studied by optical microscopy. In samples with w/s >0.5 growth of Ca(OH)2 in the c -axis direction is initially dominant. Growth in this direction ends after a few hours, but growth perpendicular to the c axis continues for several days and produces a dendritic morphology. Growth behavior is not so well defined for w/s <0.5, in part because of the large number of unhydrated particles engulfed. Increasing temperature resulted in an increase in the number of Ca(OH)2 nuclei and a decrease in nucleation time and crystal size. Increasing the w/s ratio improved the euhedral character of the Ca(OH)2 crystals, decreased the number of engulfed Ca3SiO5 particles, and increased the nucleation time. Dendritic morphology was most pronounced in the samples for which w/s = 1. Growth rates and the ultimate size of the Ca(OH)2 crystals varied within a given sample. The effects of temperature and the w/s ratio on the heat evolved during the hydration were studied by isothermal calorimetry. The times of nucleation of crystalline Ca(OH)2 estimated from calorimetry were similar to those derived from growth curves determined by optical microscopy.  相似文献   

7.
Experiments on hydrothermal synthesis were conducted using quartz or silicic acid and lime as starting materials at Ca/Si = 2.0. It is possible to synthesize pure hillebrandite (Ca2(SiO3)(OH)2) having the theoretical composition by heating at 200°C for 10 h or at 250°C for 5 h. The synthesized product is fibrous, open at each end, and has a length of 20 to 30 μm. Calcium silicate hydrate gels are produced at the initial stage of the reaction. These react further with the unreacted lime to give hillebrandite. However, when silicic acid is used as silica, hillebrandite with tricalcium silicate hydrate is observed at 250°C because of the high reaction rate of silica. On heating, hillebrandite starts to decompose at about 500°C and produces low-crystalline β-Ca2SiO4, which is stable at room temperature and has a remarkably large specific surface area of about 7 m2/g. The decomposition reaction rate in a single crystal is rapid, and the reaction is considered to proceed topotactically.  相似文献   

8.
The system Ba2SiO4-Ca2SiO4 was studied by heating mixtures of Ba2SiO4 and Ca2SiO4 at 1723 K. Six distinct phases resulted; they were examined by both X-ray diffraction and differential thermal analysis. The phases β -(Ba0.05Ca1.95)SiO4 and α-(Ba0.15Ca1.85)SiO4 are isostructural with corresponding high-temperature modifications of Ca2SiO4. The X phase (Ba0.48Ca1.52SiO4) is orthorhombic, is a pure phase rather than a solid solution, and is defined for the first time in the present work. The T phase (Ba1.31Ca0.69SiO4) is hexagonal and interpreted in terms of a unit cell with a doubled c parameter, in contrast with literature data.  相似文献   

9.
Cuspidine is a well-defined ternary compound with a stability field in the subsystem CaF2–CaSiO3–Ca2SiO4. Cuspidine is easily formed by solid-state reactions in the subsystem mentioned and is stable above its apparently congruent fusion point if heated in welded platinum containers. Above 1450° decomposition and the formation of a mixture of CaF2 and Ca2SiO4 is observed. Cuspidine also is easily formed by secondary reactions in solid mixtures of the subsystem CaF2–CaSiO3 and in ternary mixtures of these with free SiO2 if heated in open crucibles. The existence of double compounds of CaF2 and CaSiO3 is not confirmed.  相似文献   

10.
The nature of the low-temperature inversions γ-α' and α'-β was investigated by various techniques: hydrothermal and "dry" quenching runs, differential thermal analysis at atmospheric and elevated nitrogen pressures, X-ray diffractometer patterns obtained at elevated temperatures, "static" pressure techniques, and infrared absorption spectrometry. A revised energy-temperature diagram is presented for Ca2SiO4, with the transition γ' to α' taking place at about 725°C. and the α'-β transition, although not reversible at an exact temperature, taking place at about 670° C. At low water pressures (2000 lb. per sq. in.) the inversion γ-α' was placed at 675°C. Attempts to extrapolate the value obtained at 2000 lb. per sq. in. to obtain a more accurate reversible inversion temperature at atmospheric pressure, although limited in accuracy by the reliability of heat-of-transition data, would indicate a temperature of about 725° C. at atmospheric pressure. Three new compounds, 8CaO.3SiO2 -3H2O (X), 6CaO 3SiO2.H2O (Y), and 9CaO-6SiO2 H2O (Z), were found to be stable above 700°C. at H2O pressures greater than 7500 lb. per sq. in.  相似文献   

11.
The composition (0.65Zn,0.35Mg)2 SiO1 was investigated. Its thermal expansion was 32 × 10-7/°C from room temperature to 1000°C. Modulus of rupture was approximately 7000 psi between room temperature and 800°C, whereas Young's modulus held at approximately 11 × 10° psi over the same range. The substitution of 0.35 m oles Mg++ for Zn++ in Zn2Si04 causes little change in many of the physical properties, but the solid solution sinters much more readily than pure Zn2Sio4. The willemite solid solution studied has very good thermal shock resistance between room temperature and 1000°C.  相似文献   

12.
Single-crystal X-ray and electron-diffraction studies show the existence in one polymorph of 4CaO.Al2O3. 13H2O of a hexagonal structural element with α= 5.74 a.u., c = 7.92 a. u. and atomic contents Ca2(OH)7- 3H2O. These structural elements are stacked in a complex way and there are probably two or more poly-types as in SiC or ZnS. Hydrocalumite is closely related to 4CaO.A12O3.13H2O, from which it is derived by substitution of CO32-for 20H-+ 3H2O once in every eight structural elements; similar substitutions explain the existence of compounds of the types 3CaO Al2O3.Ca Y 2- xH2O and 3CaO Al2O3 Ca Y xH2O. On dehydration, 4CaO.Al2O3.13H2O first loses molecular water and undergoes stacking changes and shrinkage along c. At 150° to 250°C., Ca(OH)2 and 4CaO.3Al2O3.3H2O are formed and, by 1000°C., CaO and 12CaO.7Al2O8. The dehydration of hydrocalumite follows a similar course, but no 4CaO.3Al2O3.3H2O is formed.  相似文献   

13.
Equilibrium partial pressures of SiF4 were measured for the reactions 2SiO2( c )+2BeF2( d )⇋SiF4( g )+Be2SiO4( c ) (log P siF4(mm) = [8.790 - 7620/ T ] ±0.06(500°–640°C)) and Be2SiO4( c ) +2BeF2( d )⇋SiF4( g ) +4BeO( c )(log P siF4(mm) = [9.530–9400/T] ±0.04 (700°–780°C)), wherein BeF2 was present in solution with LiF as molten Li2BeF4. The solubility of SiF4 was low (∼0.04 mol kg-1 atm-1) in the melt. The results for the first equilibrium were combined with available thermochemical data to calculate improved Δ Hf and Δ Gf values for phenacite (–497.57 ±2.2 and –470.22±2.2 kcal, respectively, at 298°K). The few measurements above 700°C for the second equilibrium are consistent with the temperature of the subsolidus decomposition of phenacite to BeO and SiO2 and with the heat of this decomposition as determined by Holm and Kleppa. Below 700°C, the pressures of SiF4 generated showed an increasing positive deviation from the expression given for the equilibrium involving Be2SiO4 and BeO. This deviation might have been caused by the formation of an unidentified phase below 700°C which replaced the BeO; it more likely resulted from a metastable equilibrium involving BeO and SiO2.  相似文献   

14.
A ternary phase equilibrium diagram is presented for the system Mg0-Mn0-Si02. Two peritectic points exist at 1536° and 1538°C. at liquid compositions of (a) 32 MgO, 5 MnO, 63 SiO2 and (b) 36 MgO, 5.5 MnO, 58.5 SO,. Each of these liquids is in equilibrium with a hodonite (Mn-SiO,) and a high enstatite (MgSiO,) solid solution, the third crystalline phase being cristobalite (SiO2) with (a) and olivine ((Mg,Mn]2,Si04) with (b). Metasilicate solid solutions form a congruently melting rhodonite series in the central part of the MgSi03-MnSi03 join, but melt incongruently to olivine plus liquid at the MgSiO3 end and to tridymite plus liquid at the MnSi03 end. X-ray diffraction data are given for two new high enstatite solid solution structures. Rhodonite solid solutions form a continuous structural series extending from MnSi0, to 94.5 weight % MgSi03. Continuous series of solid solutions exist between Mg,Si04 and Mn2SiO4 and between MgO and MnO. Compositional data are given for coexisting condensed phases, and courses of crystallization are described for certain ternary mixtures. A plot is presented of variation of refractive index of glasses which form an almost colorless series in the region of the rhodonite and high enstatite fields. The quenching technique was used in the investigation, with oxygen partial pressure controlled to maintain manganese as Mn2+.  相似文献   

15.
On the basis of 190 runs made up to 1860°C in sealed noble-metal containers the following revisions have been made in the equilibrium diagram for the system A12O3–SiO2. Mullite melts congruently at 1850°C. The extent of equilibrium solid solution in mullite at solidus temperature is from approximately 60 mole % Al2O3 (3/2 ratio) to 63 mole % A12O3. Metastable solid solutions can be prepared up to about 67 mole % Al2O3. There is no evidence for stable solubility of excess SiO2 beyond the 3/2 composition at pressures below 3 kbars. Refractive indices are presented for glasses containing up to 60 mole % Al2O3 and from them the composition of the eutectic is confirmed at 5 mole % SiO2. The variation in lattice constants of the mullite solid solution is not an unequivocal guide to composition since mullites at one composition produced at different temperatures show differences in spacing, no doubt reflecting Al-Si ordering phenomena. The possibility of quartz and corundum being the stable assemblage at some low temperatures and pressures cannot be ruled out. A new anhydrous phase in the system is described, which was previously thought to be synthetic andalusite; it is probably a new polymorph of the Al2SiO5 composition with ortho-rhombic unit-cell dimensions a =7.55 A, b =8.27 A, and c = 5.66 A.  相似文献   

16.
Subsolidus phase relations were established in the system Si3N4-SiO2-Y2O3. Four ternary compounds were confirmed, with compositions of Y4Si2O7N2, Y2Si3O3N4, YSiO2N, and Y10(SiO4)6N2. The eutectic in the triangle Si3N4-Y2Si2O7-Y10(SiO4)6N2 melts at 1500°C and that in the triangle Si2N2O-SiO2-Y2Si2O7 at 1550°C. The eutectic temperature of the Si3N4-Y2Si2O7 join was ∼ 1520°C.  相似文献   

17.
18.
Equilibrium ratios Cr2+/Cr3+ of chromium oxide dissolved in CaO–chromium oxide–Al2O3–SiO2 melts have been determined by analysis of samples equilibrated at 1500°C under strongly reducing conditions ( p o2= 10−9.56 to 10−12.50 atm). The majority of the chromium is divalent (Cr2+) under these conditions and Cr2+/Cr3+ ratios at given constant oxygen pressures decrease with increasing basicity of the melts, expressed as CaO/SiO2 ratios. In addition, Cr2+/Cr3+ ratios, at a given CaO/SiO2 ratio, are relatively unaffected by the amount of Al2O3 present.  相似文献   

19.
The formation process of Ba2La8(SiO4)6O2 was clarified using thermogravimetry–differential thermal analysis (TG-DTA) and a high-temperature powder X-ray diffraction (HT-XRD) method. Phase changes identified from the HT-XRD data surprisingly corresponded to the weight loss and/or endothermic peaks observed in the TG-DTA curves. Raw material with the composition Ba2La8(SiO4)6O2 was completely reacted at 1400°C and produced only an apatite-type compound without a secondary phase. Moreover, the synthesis of Ba2+ x La8− x (SiO4)6O2−δ crystals with x = 0–2 was attempted using a solid-state reaction.  相似文献   

20.
Bi2O3 was added to a nominal composition of Zn1.8SiO3.8 (ZS) ceramics to decrease their sintering temperature. When the Bi2O3 content was <8.0 mol%, a porous microstructure with Bi4(SiO4)3 and SiO2 second phases was developed in the specimen sintered at 885°C. However, when the Bi2O3 content exceeded 8.0 mol%, a liquid phase, which formed during sintering at temperatures below 900°C, assisted the densification of the ZS ceramics. Good microwave dielectric properties of Q × f =12,600 GHz, ɛr=7.6, and τf=−22 ppm/°C were obtained from the specimen with 8.0 mol% Bi2O3 sintered at 885°C for 2 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号