首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tyrosine kinase receptors lead to rapid activation of phosphatidylinositol 3-kinase (PI3 kinase) and the subsequent formation of phosphatidylinositides (PtdIns) 3,4-P2 and PtdIns 3,4, 5-P3, which are thought to be involved in signaling for glucose transporter GLUT4 translocation, cytoskeletal rearrangement, and DNA synthesis. However, the specific role of each of these PtdIns in insulin and growth factor signaling is still mainly unknown. Therefore, we assessed, in the current study, the effect of SH2-containing inositol phosphatase (SHIP) expression on these biological effects. SHIP is a 5' phosphatase that decreases the intracellular levels of PtdIns 3,4,5-P3. Expression of SHIP after nuclear microinjection in 3T3-L1 adipocytes inhibited insulin-induced GLUT4 translocation by 100 +/- 21% (mean +/- the standard error) at submaximal (3 ng/ml) and 64 +/- 5% at maximal (10 ng/ml) insulin concentrations (P < 0.05 and P < 0.001, respectively). A catalytically inactive mutant of SHIP had no effect on insulin-induced GLUT4 translocation. Furthermore, SHIP also abolished GLUT4 translocation induced by a membrane-targeted catalytic subunit of PI3 kinase. In addition, insulin-, insulin-like growth factor I (IGF-I)-, and platelet-derived growth factor-induced cytoskeletal rearrangement, i.e., membrane ruffling, was significantly inhibited (78 +/- 10, 64 +/- 3, and 62 +/- 5%, respectively; P < 0.05 for all) in 3T3-L1 adipocytes. In a rat fibroblast cell line overexpressing the human insulin receptor (HIRc-B), SHIP inhibited membrane ruffling induced by insulin and IGF-I by 76 +/- 3% (P < 0.001) and 68 +/- 5% (P < 0.005), respectively. However, growth factor-induced stress fiber breakdown was not affected by SHIP expression. Finally, SHIP decreased significantly growth factor-induced mitogen-activated protein kinase activation and DNA synthesis. Expression of the catalytically inactive mutant had no effect on these cellular responses. In summary, our results show that expression of SHIP inhibits insulin-induced GLUT4 translocation, growth factor-induced membrane ruffling, and DNA synthesis, indicating that PtdIns 3,4,5-P3 is the key phospholipid product mediating these biological actions.  相似文献   

2.
Caveolae and detergent-insoluble, glycosphingolipid-enriched domains (DIGs) are cholesterol-enriched membrane domains that have been implicated in signal transduction because a variety of signaling proteins as well as phosphatidylinositol bisphosphate (PtdInsP2) are compartmentalized in these domains. We report here that depletion of cellular cholesterol leads to the inhibition of epidermal growth factor- and bradykinin-stimulated PtdIns turnover in A431 cells. This is associated with the loss of compartmentalization of epidermal growth factor receptors, Gq, and PtdInsP2 in the low density membrane domains. Replacement of cellular cholesterol leads to the reorganization of signaling molecules in the low density domains and the reestablishment of hormone-stimulated PtdIns hydrolysis. Oxysterol derivatives show a variable ability to functionally replace the cholesterol in this system. These data are consistent with the hypothesis that localization of signaling proteins and lipids to cholesterol-enriched domains is required for the proper function of hormone-stimulated PtdIns turnover.  相似文献   

3.
This study examined phosphatidylinositol 4-phosphate (PtdIns4P) synthesis in caveolae that have been suggested to be discrete signaling microdomains of the plasma membrane and are enriched in the marker protein caveolin. Caveolin-rich light membranes (CLMs) were isolated from A431 cells by detergent-free, discontinuous density-gradient centrifugation method. The CLM fraction was separated from the bulk of the cellular protein and was greatly enriched in PtdIns, PtdIns4P, and phosphatidylinositol 4, 5-bisphosphate (PtdIns(4,5)P2) and an adenosine-sensitive type II PtdIns 4-kinase activity. Preparation of CLMs by an OptiPrep-based cell fractionation procedure confirmed the co-localization of PtdIns 4-kinase and caveolin. Electron microscopy confirmed that an anti-caveolin antiserum immunopurified vesicles from CLMs that were within the size range described for caveolae in other systems. Co-immunoprecipitated PtdIns 4-kinase activity could utilize endogenous PtdIns, present within the caveolae-like vesicles, to produce PtdIns4P. The addition of recombinant phosphatidylinositol transfer protein increased PtdIns 4-kinase activity both in immunoisolated caveolae and CLMs. However, less than 1% of the total cellular PtdIns and PtdIns 4-kinase activity was present in caveolae-like vesicles, indicating that non-caveolar light membrane rafts are the main site for cellular PtdIns4P production.  相似文献   

4.
There are several recently reported examples of inositol phospholipids binding to pleckstrin homology (PH) domains of proteins. The PH domain of SOS, a guanine nucleotide exchange factor for Ras, binds to phosphatidylinositol 4,5 bisphosphate (PtdIns4,5P2). We found that binding of PtdIns4,5P2 to 6-his-tagged recombinant mSOS in vitro inhibits the ability of SOS to catalyze the association of GTP on p21RAS. This inhibition was specific for PtdIns4,5P2: a number of other phosphatidylinositols and phosphatidylserine failed to inhibit Ras GTP-association. We confirmed that the specificity of binding of PtdIns's to recombinant GST-SOS-PH domain is the same as the specificity of PtdIns's for inhibition of SOS activity: namely, that only PtdIns4,5P2 binds significantly to the SOS-PH domain. In addition, the inhibition of Ras GTP-binding is not blocked by excess free inositols suggesting that SOS binds to PtdIns4,5P2 with higher affinity than it binds to free inositols. Addition of SOS-PH domain protein prevented the inhibition of SOS by PtdIns4,5P2 as did addition of the high affinity PtdIns4,5P2-binding drug neomycin. This confirmed that SOS inhibition is mediated by the SOS-PH domain binding to the inositol moiety of PtdIns4,5P2. Binding of Grb2 to SOS did not prevent the inhibition of SOS by PtdIns4,5P2 suggesting that there must be another mechanism for regulating this inhibition. These findings show that the phospholipid PtdIns4,5P2 can suppress the activity of an enzyme involved in signal transduction and suggest that this inhibitory effect must be relieved when SOS is activated.  相似文献   

5.
Ezrin is a cytoplasmic linker molecule between plasma membrane components and the actin-containing cytoskeleton. We studied whether ezrin is associated with intercellular adhesion molecule (ICAM)-1, -2, and -3. In transfected cells, ICAM-1 and ICAM-2 colocalized with ezrin in microvillar projections, whereas an ICAM-1 construct attached to cell membrane via a glycophosphatidylinositol anchor was uniformly distributed on the cell surface. An interaction of ICAM-2 and ezrin was seen by affinity precipitation, microtiter binding assay, coimmunoprecipitation, and surface plasmon resonance methods. The calculated KD value was 3.3 x 10(-7) M. Phosphatidylinositol 4, 5-bisphosphate (PtdIns(4,5)P2) induced an interaction of ezrin and ICAM-1 and enhanced the interaction of ezrin and ICAM-2, but ICAM-3 did not bind ezrin even in the presence of PtdIns(4,5)P2. PtdIns(4, 5)P2 was shown to bind to cytoplasmic tails of ICAM-1 and ICAM-2, which are the first adhesion proteins demonstrated to interact with PtdIns(4,5)P2. The results indicate an interaction of ezrin with ICAM-1 and ICAM-2 and suggest a regulatory role of phosphoinositide signaling pathways in regulation of ICAM-ezrin interaction.  相似文献   

6.
Phosphatidylinositol 4,5-biphosphate (PtdIns(4,5)P2), an important element in eukaryotic signal transduction, is synthesized either by phosphatidylinositol-4-phosphate 5-kinase (PtdIns(4)P 5K) from phosphatidylinositol 4-phosphate (PtdIns(4)P) or by phosphatidylinositol-5-phosphate 4-kinase (PtdIns(5)P 4K) from phosphatidylinositol 5-phosphate (PtdIns(5)P). Two Saccharomyces cerevisiae genes, MSS4 and FAB1, are homologous to mammalian PtdIns(4)P 5Ks and PtdIns(5)P 4Ks. We show here that MSS4 is a functional homolog of mammalian PtdIns(4)P 5K but not of PtdIns(5)P 4K in vivo. We constructed a hemagglutinin epitope-tagged form of Mss4p and found that Mss4p has PtdIns(4)P 5K activity. Immunofluorescent and fractionation studies of the epitope-tagged Mss4p suggest that Mss4p is localized on the plasma membrane, whereas Fab1p is reportedly localized on the vacuolar membrane. A temperature-sensitive mss4-1 mutant was isolated, and its phenotypes at restrictive temperatures were found to include increased cell size, round shape, random distribution of actin patches, and delocalized staining of cell wall chitin. Thus, biochemical and genetic analyses on Mss4p indicated that yeast PtdIns(4)P 5K localized on the plasma membrane is required for actin organization.  相似文献   

7.
Receptor-mediated endocytosis via clathrin-coated vesicles has been extensively studied and, while many of the protein players have been identified, much remains unknown about the regulation of coat assembly and the mechanisms that drive vesicle formation [1]. Some components of the endocytic machinery interact with inositol polyphosphates and inositol lipids in vitro, implying a role for phosphatidylinositols in vivo [2] [3]. Specifically, the adaptor protein complex AP2 binds phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), PtdIns(3)P, PtdIns(3,4,5)P3 and inositol phosphates. Phosphatidylinositol binding regulates AP2 self-assembly and the interactions of AP2 complexes with clathrin and with peptides containing endocytic motifs [4] [5]. The GTPase dynamin contains a pleckstrin homology (PH) domain that binds PtdIns(4,5)P2 and PtdIns(3,4,5)P3 to regulate GTPase activity in vitro [6] [7]. However, no direct evidence for the involvement of phosphatidylinositols in clathrin-mediated endocytosis exists to date. Using well-characterized PH domains as high affinity and high specificity probes in combination with a perforated cell assay that reconstitutes coated vesicle formation, we provide the first direct evidence that PtdIns(4,5)P2 is required for both early and late events in endocytic coated vesicle formation.  相似文献   

8.
In this study we have quantitatively assessed the basal turnover of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and M3-muscarinic receptor-mediated changes in phosphoinositides in the human neuroblastoma cell line, SH-SY5Y. We demonstrate that the polyphosphoinositides represent a minor fraction of the total cellular phosphoinositide pool and that in addition to rapid, sustained increases in [3H]inositol phosphates dependent upon the extent of receptor activation by carbachol, there are equally rapid and sustained reductions in the levels of polyphosphoinositides. Compared with phosphatidylinositol 4-phosphate (PtdIns(4)P), PtdIns(4,5)P2 was reduced with less potency by carbachol and recovered faster following agonist removal suggesting protection of PtdIns(4,5)P2 at the expense of PtdIns(4)P and indicating specific regulatory mechanism(s). This does not involve a pertussis toxin-sensitive G-protein regulation of PtdIns(4)P 5-kinase. Using wortmannin to inhibit PtdIns 4-kinase activity, we demonstrate that the immediate consequence of blocking the supply of PtdIns(4)P (and therefore PtdIns(4,5)P2) is a failure of agonist-mediated phosphoinositide and Ca2+ signaling. The use of wortmannin also indicated that PtdIns is not a substrate for receptor-activated phospholipase C and that 15% of the basal level of PtdIns(4,5)P2 is in an agonist-insensitive pool. We estimate that the agonist-sensitive pool of PtdIns(4,5)P2 turns over every 5 s (0.23 fmol/cell/min) during sustained receptor activation by a maximally effective concentration of carbachol. Immediately following agonist addition, PtdIns(4,5)P2 is consumed >3 times faster (0.76 fmol/cell/min) than during sustained receptor activation which represents, therefore, utilization by a partially desensitized receptor. These data indicate that resynthesis of PtdIns(4,5)P2 is required to allow full early and sustained phases of receptor signaling. Despite the critical dependence of phosphoinositide and Ca2+ signaling on PtdIns(4,5)P2 resynthesis, we find no evidence that this rate resynthesis is limiting for agonist-mediated responses.  相似文献   

9.
Phospholipase C-mediated release of inositol trisphosphate, followed by an increase in free intracellular calcium, is an important signal transduction pathway for several membrane receptors. In the present investigation, the coupling of various receptors to phospholipase C was studied in the human keratinocyte line HaCaT. Inositol trisphosphate formation was determined by anion-exchange chromatography, and the release of intracellular calcium was analysed with the fluorescence probe Fura-2 AM. Activation of HaCaT keratinocytes with bradykinin resulted in a time- and dose-dependent release of inositol trisphosphate and intracellular calcium, with an EC50 value of 50 nM for bradykinin-induced inositol trisphosphate formation. The mediators and cytokines IL-1, IL-4, IL-6, IL-8, EGF and TGF alpha, as well as bombesin, prolactin, carbachol, substance P and retinoic acid, did not activate this pathway. The inability of the mediators examined to activate phospholipase C may be due to lack of the respective cognate receptors or to the use of other signal transduction pathways.  相似文献   

10.
A specific antibody, 6313/G2, to the N-terminus of the angiotensin II type I (AT1) receptor causes retention of the AT1 receptor in the plasma membrane of rat adrenal zona glomerulosa cells and stimulates steroidogenesis and inositol trisphosphate (IP3) release. Its effects are not significantly additive with those of angiotensin. In contrast, 6313/G2 completely inhibits angiotensin induced translocation of protein kinase C to the membrane fraction, although alone it has no effect. The data suggest that IP3 linked events, such as steroidogenesis, do not require receptor internalization, but protein kinase C activation does. They also confirm that protein kinase C activation is not required for stimulation of steroidogenesis in rat dispersed glomerulosa cells.  相似文献   

11.
Distinct forms of inositol and phosphatidylinositol polyphosphate 5-phosphatases selectively remove the phosphate from the 5-position of the inositol ring from both soluble and lipid substrates, i.e., inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), inositol 1,3,4, 5-tetrakisphosphate (Ins(1,3,4,5)P4), phosphatidylinositol 4, 5-bisphosphate (PtdIns(4,5)P2) or phosphatidylinositol 3,4, 5-trisphosphate (PtdIns(3,4,5)P3). In mammalian cells, this family contains a series of distinct genes and splice variants. All inositol polyphosphate 5-phosphatases share a 5-phosphatase domain and various protein modules probably responsible for specific cell localisation or recruitment (SH2 domain, proline-rich sequences, prenylation sites, etc.). Type I Ins(1,4,5)P3 5-phosphatase also uses Ins(1,3,4,5)P4 but not the phosphoinositides as substrates. This enzyme is targeted to specific membranes by means of a prenylation site. Type II 5-phosphatases can use both PtdIns(4,5)P2 and PtdIns(3,4,5)P3 as substrates. Five mammalian enzymes and multiple splice variants are known: INPP5P or inositol polyphosphate 5-phosphatase II, OCRL (a Golgi protein implicated in the Lowe oculocerebrorenal syndrome), synaptojanin (a protein involved in the recycling of synaptic vesicles), SHIP 1 and SHIP 2 (or SH2-containing inositol 5-phosphatases). As discussed in this review, the substrate specificity, regulatory mechanisms, subcellular localisation and tissue specificity indicate that the different 5-phosphatase isoforms may play specific roles. As known in the dephosphorylation of tyrosine containing substrates by the tyrosine protein phosphatases or in the metabolism of cyclic nucleotides by the cyclic nucleotide phosphodiesterases, inositol polyphosphate 5-phosphatases directly participate in the control of second messengers in response to both activation or inhibitory cell signalling.  相似文献   

12.
It has been demonstrated that the lipid products of the phosphoinositide 3-kinase (PI3K) can associate with the Src homology 2 (SH2) domains of specific signaling molecules and modify their actions. In the current experiments, phosphatidylinositol 3,4, 5-trisphosphate (PtdIns-3,4,5-P3) was found to bind to the C-terminal SH2 domain of phospholipase Cgamma (PLCgamma) with an apparent Kd of 2.4 microM and to displace the C-terminal SH2 domain from the activated platelet-derived growth factor receptor (PDGFR). To investigate the in vivo relevance of this observation, intracellular inositol trisphosphate (IP3) generation and calcium release were examined in HepG2 cells expressing a series of PDGFR mutants that activate PLCgamma with or without receptor association with PI3K. Coactivation of PLCgamma and PI3K resulted in an approximately 40% increase in both intracellular IP3 generation and intracellular calcium release as compared with selective activation of PLCgamma. Similarly, the addition of wortmannin or LY294002 to cells expressing the wild-type PDGFR inhibited the release of intracellular calcium. Thus, generation of PtdIns-3,4,5-P3 by receptor-associated PI3K causes an increase in IP3 production and intracellular calcium release, potentially via enhanced PtdIns-4, 5-P2 substrate availability due to PtdIns-3,4,5-P3-mediated recruitment of PLCgamma to the lipid bilayer.  相似文献   

13.
This study investigated the mechanism of protein kinase C-mediated inhibition of ATP-induced phospholipase C activation in cultured bovine aorta endothelial cells (BAEC). In BAEC labeled with 3H-inositol, phorbol myristate acetate (PMA) prevented ATP-induced inositol bisphosphate and inositol trisphosphate formation. In membranes prepared from these PMA-treated cells, Ca(2+)-, sodium fluoride-, GTP gamma S-, and ATP plus GTP gamma S-stimulated inositol bisphosphate, but not inositol trisphosphate, formation was inhibited. Inositol trisphosphate phosphatase activity was not altered in membranes from PMA-treated BAEC. These results suggest that 1) protein kinase C inhibits ATP-induced phospholipase C activation in BAEC through interference with the coupling of phospholipase C with a G-protein and through an effect on phospholipase C itself, and 2) different mechanisms are responsible for the inhibition by protein kinase C of the phospholipase C-mediated hydrolysis of phosphatidylinositol bisphosphate and phosphatidyl-inositol phosphate.  相似文献   

14.
Cellular levels of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) are rapidly elevated in response to activation of growth factor receptor tyrosine kinases. This polyphosphoinositide binds the pleckstrin homology (PH) domain of GRP1, a protein that also contains 200 residues with high sequence similarity to a segment of the yeast Sec7 protein that functions as an ADP ribosylation exchange factor (ARF) (Klarlund, J., Guilherme, A., Holik, J. J., Virbasius, J. V., Chawla, A., and Czech, M. P. (1997) Science 275, 1927-1930). Here we show that dioctanoyl PtdIns(3,4,5)P3 binds the PH domain of GRP1 with a Kd = 0.5 microM, an affinity 2 orders of magnitude greater than dioctanoyl-PtdIns(4,5)P2. Further, the Sec7 domain of GRP1 is found to catalyze guanine nucleotide exchange of ARF1 and -5 but not ARF6. Importantly, PtdIns(3,4,5)P3, but not PtdIns(4,5)P2, markedly enhances the ARF exchange activity of GRP1 in a reaction mixture containing dimyristoylphosphatidylcholine micelles, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid, and a low concentration of sodium cholate. PtdIns(3,4,5)P3-mediated ARF nucleotide exchange through GRP1 is selectively blocked by 100 microM inositol 1,3,4,5-tetrakisphosphate, which also binds the PH domain of GRP1. Taken together, these data are consistent with the hypothesis that selective recruitment of GRP1 to PtdIns(3,4,5)P3 in membranes activates ARF1 and -5, known regulators of intracellular membrane trafficking.  相似文献   

15.
It has been reported that there are two alternatively spliced variants of phospholipase C-delta4 (PLCdelta4), termed ALT I and II, that contain an additional 32 and 14 amino acids in their respective sequences in the linker region between the catalytic X and Y domains (Lee, S. B., and Rhee, S. G. (1996) J. Biol. Chem. 271, 25-31). We report here the isolation and characterization of a novel alternative splicing isoform of PLCdelta4, termed ALT III, as a negative regulator of PLC. In ALT III, alternative splicing occurred in the catalytic X domain, i.e. 63 amino acids (residues 424-486) containing the C-terminal of the X domain and linker region were substituted for 32 amino acids corresponding to the insert sequence of ALT I. Although the expression level of ALT III was found to be much lower in most tissues and cells compared with that of PLCdelta4, it was significantly higher in some neural cells, such as NIE-115 cells and p19 cells differentiated to neural cells by retinoic acid. Interestingly, recombinant ALT III protein did not retain enzymatic activity, and the activity of PLCdelta4 overexpressed in COS7 cells was markedly decreased by the co-expression of ALT III but not by ALT I or II. Moreover, N-terminal pleckstrin homology domain (PH domain) of ALT III alone could inhibit the increase of inositol-1,4, 5-trisphosphate levels in PLCdelta4-overexpressing NIH3T3 cells, whereas a PH domain deletion mutant could not, indicating that the PH domain is necessary and sufficient for its inhibitory effect. The ALT III PH domain specifically bound to phosphatidylinositol (PtdIns)-4,5-P2 and PtdIns-3,4,5-P3 but not PtdIns, PtdIns-4-P, or inositol phosphates, and the mutant R36G, which retained only weak affinity for PtdIns-4,5-P2, could not inhibit the activity of PLCdelta4. These results indicate that PtdIns-4,5-P2 binding to PH domain is essential for the inhibitory effect of ALT III. ALT III also inhibited PLCdelta1 activity and partially suppressed PLCgamma1 activity, but not PLCbeta1 in vitro; it did inhibit all types of isozymes tested in vivo. Taken together, our results indicate that ALT III is a negative regulator of PLC that is most effective against the PLC delta-type isozymes, and its PH domain is essential for its function.  相似文献   

16.
Inositol phospholipids regulate a variety of cellular processes including proliferation, survival, vesicular trafficking, and cytoskeletal organization. Recently, two novel phosphoinositides, phosphatidylinositol-3,5-bisphosphate (PtdIns-3,5-P2) and phosphatidylinositol- 5-phosphate (PtdIns-5-P), have been shown to exist in cells. PtdIns-3,5-P2, which is regulated by osmotic stress, appears to be synthesized by phosphorylation of PtdIns-3-P at the D-5 position. No evidence yet exists for how PtdIns-5-P is produced in cells. Understanding the regulation of synthesis of these molecules will be important for identifying their function in cellular signaling. To determine the pathway by which PtdIns-3,5-P2 and Ptd-Ins-5-P might be synthesized, we tested the ability of the recently cloned type I PtdIns-4-P 5-kinases (PIP5Ks) alpha and beta to phosphorylate PtdIns-3-P and PtdIns at the D-5 position of the inositol ring. We found that the type I PIP5Ks phosphorylate PtdIns-3-P to form PtdIns-3,5-P2. The identity of the PtdIns-3,5-P2 product was determined by anion exchange high performance liquid chromatography analysis and periodate treatment. PtdIns-3,4-P2 and PtdIns-3,4,5-P3 were also produced from PtdIns-3-P phosphorylation by both isoforms. When expressed in mammalian cells, PIP5K Ialpha and PIP5K Ibeta differed in their ability to synthesize PtdIns-3,5-P2 relative to PtdIns-3,4-P2. We also found that the type I PIP5Ks phosphorylate PtdIns to produce PtdIns-5-P and phosphorylate PtdIns-3,4-P2 to produce PtdIns-3,4,5-P3. Our findings suggest that type I PIP5Ks synthesize the novel phospholipids PtdIns-3,5-P2 and PtdIns-5-P. The ability of PIP5Ks to produce multiple signaling molecules indicates that they may participate in a variety of cellular processes.  相似文献   

17.
Signal transduction across cell membranes often involves the activation of both phosphatidylinositol (PI)-specific phospholipase C (PLC) and phosphoinositide 3-kinase (PI 3-kinase). Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a substrate for both enzymes, is converted to phosphatidylinositol 3,4, 5-trisphosphate (PI(3,4,5)P3) by the action of PI 3-kinase. Here, we show that PI(3,4,5)P3 activates purified PLC-gamma isozymes by interacting with their Src homology 2 domains. Furthermore, the expression of an activated catalytic subunit of PI 3-kinase in COS-7 cells resulted in an increase in inositol phosphate formation, whereas platelet-derived growth factor-induced PLC activation in NIH 3T3 cells was markedly inhibited by the specific PI 3-kinase inhibitor LY294002. These results suggest that receptors coupled to PI 3-kinase may activate PLC-gamma isozymes indirectly, in the absence of PLC-gamma tyrosine phosphorylation, through the generation of PI(3,4,5)P3.  相似文献   

18.
We have studied the biosynthesis and transport of the endogenous caveolins in MDCK cells. We show that in addition to homooligomers of caveolin-1, heterooligomeric complexes of caveolin-1 and -2 are formed in the ER. The oligomers become larger, increasingly detergent insoluble, and phosphorylated on caveolin-2 during transport to the cell surface. In the TGN caveolin-1/-2 heterooligomers are sorted into basolateral vesicles, whereas larger caveolin-1 homooligomers are targeted to the apical side. Caveolin-1 is present on both the apical and basolateral plasma membrane, whereas caveolin-2 is enriched on the basolateral surface where caveolae are present. This suggests that caveolin-1 and -2 heterooligomers are involved in caveolar biogenesis in the basolateral plasma membrane. Anti-caveolin-1 antibodies inhibit the apical delivery of influenza virus hemagglutinin without affecting basolateral transport of vesicular stomatitis virus G protein. Thus, we suggest that caveolin-1 homooligomers play a role in apical transport.  相似文献   

19.
Tachykinins: receptor to effector   总被引:1,自引:0,他引:1  
Tachykinins belong to an evolutionarily conserved family of peptide neurotransmitters. The mammalian tachykinins include substance P, neurokinin A and neurokinin B, which exert their effects by binding to specific receptors. These tachykinin receptors are divided into three types, designated NK1, NK2 and NK3, respectively. Tachykinin receptors have been cloned and contain seven segments spanning the cell membrane, indicating their inclusion in the G-protein-linked receptor family. The continued development of selective agonists and antagonists for each receptor has helped elucidate roles for these mediators, ranging from effects in the central nervous system to the perpetuation of the inflammatory response in the periphery. Various selective ligands have shown both inter- and intraspecies differences in binding potencies, indicating distinct binding sites in the tachykinin receptor. The interaction of tachykinin with its receptor activates Gq, which in turn activates phospholipase C to break down phosphatidyl inositol bisphosphate into inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 acts on specific receptors in the sarcoplasmic reticulum to release intracellular stores of Ca2+, while DAG acts via protein kinase C to open L-type calcium channels in the plasma membrane. The rise in intracellular [Ca2+] induces the tissue response. With an array of actions as diverse as that seen with tachykinins, there is scope for numerous therapeutic possibilities. With the development of potent, selective non-peptide antagonists, there could be potential benefits in the treatment of a variety of clinical conditions, including chronic pain, Parkinson's disease, Alzheimer's disease, depression, rheumatoid arthritis, irritable bowel syndrome and asthma.  相似文献   

20.
A number of reports suggest that under different conditions leading to cytoskeleton reorganization the GTPase Rac1 and possibly RhoA are downstream targets of phosphoinositide 3-kinase (PI 3-kinase). In order to gain more insight into this particular signaling pathway, we have addressed the question of a possible direct interaction of PI 3-kinase products with the Rho family GTPases RhoA, Rac1, and Cdc42. Using recombinant proteins, we found that Rac1 and, to a lesser extent, RhoA but not Cdc42 were capable to selectively bind to phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) in a mixture of crude brain phosphoinositides. Nucleotide-depleted Rac1 was the most efficient, but the GDP- and GTP-bound forms retained significant PtdIns(3,4,5)P3 binding activity. This protein-lipid association involved electrostatic as well as hydrophobic interactions, since both phosphate groups located at specific positions of the inositol ring and fatty-acyl chains were absolutely required. Based on the sequence of Rac1, two potential binding sites were identified, one at the C terminus and one in the extra alpha-helical domain. Deletion of these two domains resulted in a complete loss of binding to PI 3-kinase products. Finally, PtdIns(3, 4,5)P3 strongly stimulated GDP dissociation from Rac1 in a dose-dependent manner. In agreement, data obtained in intact cells suggest that PtdIns(3,4,5)P3 might target Rac1 to peculiar membrane domains, allowing formation of specific clusters containing not only small GTPases but other partners bearing pleckstrin homology domains such as specific exchange factors required for Rac1 and RhoA activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号