首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用连续离子层吸附与反应(SILAR)方法, 在室温液相条件下(20~25℃)制备了沉积于玻璃衬底上的CuSCN半导体薄膜, 以X射线衍射、扫描电镜、光学透过谱考察了所得薄膜的晶体结构、微观表面断面形貌和光学性能, 探讨了影响CuSCN薄膜沉积的关键因素. 结果表明, 所得薄膜具有明显结晶性及沿c轴择优生长趋势, 表面致密、均匀, 分别由50~100nm的较大颗粒和20~30nm的小颗粒紧密堆聚而成; 薄膜在400~800nm波段的透过率为50%~70%, 光学禁带宽度为3.94eV. CuSCN薄膜的沉积过程受铜前驱液中S2O32-与Cu2+的摩尔比、衬底漂洗方式和生长温度等因素影响显著, 高络离子浓度、多次沉积反应后再进行衬底漂洗、以及室温生长条件有利于得到高质量的CuSCN薄膜.  相似文献   

2.
在有机材料柔性衬底上沉积ITO膜,需要在低温及无损伤(即避免离子轰击及热损伤等)情况下进行.为满足此要求,采用电子束蒸发法来实现在PI衬底上沉积ITO膜,对沉积参数如电子束特性、氧分压及衬底温度对薄膜质量的影响进行了研究;对薄膜结构、表面形貌、电学及光学特性进行了检测.最后,在PI衬底上获得高质量ITO膜,其可见光透过率超过90%,电阻率低于5×10-4 Ω*cm.  相似文献   

3.
ITO/MgF2复合薄膜既具有较好的表面导电性能又具有较高的透过率,可应用于空间太阳电池玻璃盖板表面。文章主要对ITO/MgF2复合薄膜中表层的超薄ITO薄膜进行了研究。利用TFCalc软件模拟了ITO薄膜厚度对ITO/MgF2复合薄膜光学性能的影响,根据模拟结果采用电子束蒸发法在衬底上依次沉积MgF2薄膜和氧化铟锡(ITO)薄膜,研究了ITO薄膜工艺参数(沉积速率、沉积温度和工作气压)和ITO薄膜厚度对ITO/MgF2复合薄膜光电性能及微观结构的影响。当ITO薄膜沉积速率为0.05nm/s、沉积温度为400℃、工作气压为2.3×10~(-2) Pa、厚度为10nm时,表层ITO薄膜基本连续,其方块电阻(1.94kΩ/)已符合设计需求,ITO/MgF2复合薄膜在可见光区间(400~800nm)的平均透过率达到89.00%。  相似文献   

4.
以Ni(NO_3)_2水溶液为沉积液,采用阴极电化学沉积法在FTO导电玻璃上制备了纳米晶NiO薄膜。通过X射线衍射、紫外-可见光透过谱等手段表征薄膜结晶性、表面微观形貌以及光学特性。结果表明,沉积电位以及沉积时间均对电化学沉积法薄膜沉积过程存在重要影响。在优化条件下(沉积电压为-0.9V、沉积时间为2~5min),所获薄膜致密均一,无裂纹,对可见光的透过率高达85%。  相似文献   

5.
本文采用直流反应磁控溅射法及能量过滤磁控溅射技术,以玻璃为衬底制备了纳米TiO2薄膜和纳米TiO2/ITO复合薄膜.利用X射线衍射(XRD) 、扫描电镜(SEM) 、紫外-可见分光光度计(UV-VIS) 、椭偏光谱仪(VASE型)和接触角测定等手段对薄膜进行了表征.研究表明:纳米TiO2/ITO复合薄膜表面水的初始接触角较纳米TiO2薄膜明显减小,ITO膜层的存在抑制了光生载流子的复合,在紫外光照射5min后接触角迅速下降,紫外光照射30min后接近0°,亲水性较纳米TiO2薄膜有明显提高;应用能量过滤磁控溅射技术制备的薄膜晶粒尺寸减小至10nm左右,薄膜表面平整,吸收边波长"蓝移"至320nm;纳米TiO2/ITO复合薄膜在可见光波段的透过率下降至60%左右,较纳米TiO2薄膜的80%明显降低.  相似文献   

6.
透明致密ZnO薄膜的恒电流沉积及生长过程研究   总被引:2,自引:0,他引:2  
采用阴极恒电流沉积方法, 以Zn(NO 3)2水溶液为电沉积液, 在经电化学预处理后的ITO导电玻璃上生长了具有c轴高度择优取向、均匀致密的透明ZnO薄膜. 采用X射线衍射、扫描电镜和光学透过谱等技术, 对不同沉积时间条件下薄膜的结晶特性、表面和断面结构、光学性质等进行了研究. 结果表明, 沉积时间对ZnO薄膜质量影响明显: 在薄膜生长后期(120min), ZnO薄膜的结晶性和表面平整度明显降低, 晶粒尺寸增大, 可见光透过率下降, 表明高质量ZnO薄膜的电化学沉积有一最佳生长时间; 此外, 薄膜厚度随时间呈线性变化, 表明可通过生长时间实现对ZnO薄膜厚度的精确控制.  相似文献   

7.
本文利用射频磁控溅射薄膜沉积技术在柔性聚酰亚胺(PI)、氧化铟锡(ITO)玻璃及石英玻璃衬底上制备了透明硫化锌(ZnS)薄膜。通过改变生长过程中的衬底温度,全面系统地研究了衬底温度对柔性和刚性ZnS薄膜的晶体结构、光透过率、光学常数以及表面性能影响的规律。研究表明升高衬底温度有利于形成ZnS薄膜(111)晶面的择优取向生长。不同衬底温度条件下制备的柔性和刚性ZnS薄膜在可见光波长范围内的平均光透过率均大于80%;在红外波长范围的平均光透过率达到85%。柔性ZnS薄膜在400 nm-890 nm波长范围内的光学折射率为2.21-2.56。刚性ZnS薄膜的光学折射率随着衬底温度的升高有所增加,当衬底温度为300℃时,刚性ZnS薄膜在890 nm波长处的折射率达到2.26。柔性ZnS薄膜厚度及表面粗糙度均随着衬底温度的升高而降低,当衬底温度为300℃时,柔性ZnS薄膜表面均方根粗糙度达到最小值2.99 nm。为实现高性能柔性ZnS光电器件,应控制生长柔性ZnS薄膜的衬底温度在200℃-300℃,以获得最优化的器件性能。  相似文献   

8.
衬底温度对ITO和ITO:Zr薄膜性能的影响   总被引:1,自引:1,他引:0  
利用双靶共溅法在玻璃衬底上沉积了Zr掺杂ITO薄膜,对比研究了在不同衬底温度下ITO和ITOZr薄膜性能的变化.XRD和AFM分析表明,ITOZr比ITO薄膜具有更好的晶化程度和较低的表面粗糙度,Zr的掺入促进薄膜晶化的同时导致了(222)晶面向(400)晶面取向的转变.室温下Zr的掺杂显著改善了薄膜的光电性能,方阻由260.12 Ω降为91.65Ω,光学透过率也有所上升.随着温度的上升,方阻可达到10 Ω,薄膜也表现出明显的"B-M"效应,通过直接跃迁的模型得出ITOZr比ITO薄膜具有更宽的光学禁带.共溅法制备的ITOZr薄膜比传统的ITO薄膜展现了更好的综合性能.  相似文献   

9.
用脉冲磁控溅射法在柔性衬底聚对苯二甲酸乙二醇酯(PET)上制备了氧化铟锡(ITO)透明导电薄膜,研究了溅射气压、时间和衬底温度等工艺条件对ITO薄膜光电性能的影响,并采用X射线衍射仪(XRD)、扫描电镜(SEM)对薄膜的物相结构与表面形貌进行了分析。结果表明:薄膜的平均晶粒尺寸随衬底温度的升高而增大;当溅射时间增加时,方块电阻与光透过率均减小;当衬底温度升高时,方块电阻减小,可见光透过率增大。  相似文献   

10.
使用脉冲激光沉积(PLD)方法在柔性衬底PMMA和PET上制备了具有高c轴择优取向的AZO(ZnO∶Al)薄膜。通过X射线衍射(XRD)、紫外可见分光光度计(UV-Vis)和纳米划痕仪,研究了在不同衬底下生长的薄膜样品的晶体结构、光学性能和附着力。结果表明,两种柔性衬底上生长的AZO薄膜都是单一的ZnO六方相,可见光范围内光学透过率均大于85%;PMMA、PET衬底上AZO薄膜的临界载荷数值分别为31.31mN和16.97mN,PET衬底上ITO薄膜的临界载荷数值为40.55mN。  相似文献   

11.
The aim of this work is the preparation of RF sputtered indium-tin oxide (ITO) thin films for application as transparent heat mirrors. The heat mirrors are important elements for the photothermal solar energy conversion. In combination with moderate spectral selectivity of the solar absorbers they could increase the efficiency of the solar collector. The optical properties of ITO and double-layer ITO with titanium dioxide (TiO2) structures in the visible and infrared ranges were investigated. The films were deposited on glass substrates by RF sputtering technique. Tin-doped indium, as well as titanium targets was used. The influence of the In-Sn target composition and the deposition parameters on the film properties were studied. The films' surface morphology and structure were investigated by SEM, TEM and XRD, the composition was studied applying electron probe microanalyzer (EPMA). The thicknesses of the films were determined by the laser ellipsometry method. The measurements in the infrared range were performed on Fourier transform infrared spectrophotometer (FTIR). The single layer ITO structures showed reflectance in the infrared range not exceeding 50% at longer wavelengths. The double layer structures with TiO2 under layer showed increased reflectance in the infrared range with high visible transmittance reaching 85%.  相似文献   

12.
Tin-doped indium oxide (ITO) films were deposited by RF magnetron sputtering on TiO2-coated glass substrates (the TiO2 layer is usually called seed layer). The properties of ITO films prepared at a substrate temperature of 300 °C on bare and TiO2-coated glass substrates have been analyzed by using X-ray diffraction, atomic force microscope, optical and electrical measurements. Comparing with single layer ITO film, the ITO film with a TiO2 seed layer of 2 nm has a remarkable 41.2% decrease in resistivity and similar optical transmittance. The glass/TiO2 (2 nm)/ITO film achieved shows a resistivity of 3.37 × 10−4 Ω cm and an average transmittance of 93.1% in the visible range. The glass/TiO2 may be a better substrate compared with bare glass for depositing high quality ITO films.  相似文献   

13.
Silicon dioxide (SiO2) thin films have gained considerable attention because of their various industrial applications. For example, SiO2 thin films are used in superhydrophilic self-cleaning surface glass, UV protection films, anti-reflection coatings, and insulating materials. Recently, many processes such as vacuum evaporation, sputtering, chemical vapor deposition, and spin coating have been widely applied to prepare thin films of functionally graded materials. However, these processes suffer from several engineering problems. For example, a special apparatus is required for the deposition of films, and conventional wet processes are not suitable for coating the surfaces of substrates with a large surface area and complex morphology. In this study, we investigated the film morphology and optical properties of SiO2 films prepared by a novel technique, namely, liquid phase deposition (LPD). Images of the SiO2 films were obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM) in order to study the surface morphology of these films: these images indicate that films deposited with different reaction times were uniform and dense and were composed of pure silica. Optical properties such as refractive index and transmittance were estimated by UV-vis spectroscopy and ellipsometry. SiO2 films with porous structures at the nanometer scale (100-250 nm) were successfully produced by LPD. The deposited film had excellent transmittance in the visible wavelength region.  相似文献   

14.
Copper loaded TiO2 brookite thin films were deposited on glass substrates using the dip-coating method. The crystalline structure of the films was characterized by X-ray diffraction analysis. X-ray photoelectron spectroscopy was used to evaluate the properties of the film surfaces. The transmittance spectra of the films were obtained by the Shimadzu multi-purpose spectrophotometer. The water contact angle on the film surfaces during irradiation and storage in a dark place was measured by a contact angle analyzer. The results indicate that Cu loading did not affect the transmittance spectra, whereas it had a significant effect on the hydrophilicity of the TiO2 film surface.  相似文献   

15.
本实验的ITO薄膜样品是利用直流磁控溅射技术在玻璃基片上沉积而成的。通过改变溅射功率,研究不同溅射功率对ITO薄膜光学性能的影响。经各实验测试后发现:在实验给定的功率区间内,ITO薄膜的厚度随着溅射功率的增加而增加,其可见光透过率则随之降低。  相似文献   

16.
Titanium oxide thin films were deposited by DC reactive magnetron sputtering on ZnO (80 nm thickness)/soda-lime glass and SiO2 substrates at different gas pressures. The post annealing on the deposited films was performed at 400 °C in air atmosphere. The results of X-ray diffraction (XRD) showed that the films had anatase phase after annealing at 400 °C. The structure and morphology of deposited layers were evaluated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface grain size and roughness of TiO2 thin films after annealing were around 10-15 nm and 2-8 nm, respectively. The optical transmittance of the films was measured using ultraviolet-visible light (UV-vis) spectrophotometer and photocatalytic activities of the samples were evaluated by the degradation of Methylene Blue (MB) dye. Using ZnO thin film as buffer layer, the photocatalytic properties of TiO2 films were improved.  相似文献   

17.
Indium tin oxide (ITO) thin films have been deposited onto polycarbonate substrates by ion beam assisted deposition technique at room temperature. The structural, optical and electrical properties of the films have been characterized by X-ray diffraction, atomic force microscopy, optical transmittance, ellipsometric and Hall effect measurements. The effect of the ion beam energy on the properties of the films has been studied. The optical parameters have been obtained by fitting the ellipsometric spectra. It has been found that high quality ITO film (low electrical resistivity and high optical transmittance) can be obtained at low ion beam energy. In addition, the ITO film prepared at low ion beam energy gives a high reflectance in IR region that is useful for some electromagnetic wave shielding applications.  相似文献   

18.
Ga-doped zinc oxide (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The influence of substrate temperature on the structural, electrical, and optical properties of ZnO:Ga films was investigated. The X-ray diffraction (XRD) studies show that higher temperature helps to promote Ga substitution more easily. The film deposited at 350 °C has the optimal crystal quality. The morphology of the films is strongly related to the substrate temperature. The film deposited is dense and flat with a columnar structure in the cross-section morphology. The transmittance of the ZnO:Ga thin films is over 90%. The lowest resistivity of the ZnO:Ga film is 4.48×10−4 Ω cm, for a film which was deposited at the substrate temperature of 300 °C.  相似文献   

19.
Optical and structural properties of LaF3 thin films   总被引:1,自引:0,他引:1  
LaF(3) thin films of different thicknesses were deposited on CaF(2) (111) and silicon substrates at a relatively low substrate temperature of 150 degrees C. Optical (transmittance, reflectance, refractive index, and extinction coefficient) and mechanical (morphology and crystalline structure) properties have been investigated and are discussed. It is shown that LaF(3) thin films deposited on CaF(2) (111) substrates are monocrystalline and have a bulklike dense structure. Furthermore, it is presented that low-loss LaF(3) thin films can be deposited not only by boat evaporation but also by electron beam evaporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号