共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
一种基于SAE-RF算法的配电变压器故障诊断方法 总被引:1,自引:0,他引:1
为有效解决配电变压器故障诊断中面临的数据特征人工提取、机器学习调参困难等问题,提出了一种基于堆栈自编码器(SAE)和随机森林(RF)组合的配电变压器故障诊断方法.建立SAE配电变压器故障特征自动挖掘模型,利用大量的无标签数据对SAE模型中的每一个自编码器进行逐层无监督训练,通过贝叶斯优化算法自动选择模型的最优参数;通过有标签数据对模型参数进行有监督细调,挖掘出能够代表各种故障本质属性的特征量;创建一个RF分类器对故障类型进行辨识,调参过程同样实现参数的自动寻优.试验结果表明,所提方法对配电变压器故障诊断准确率达到96.67%,显著优于单独使用SAE和RF的分类结果. 相似文献
3.
为提高变压器故障诊断的准确率,提出了一种新型的变压器故障诊断网络,该网络以基于栈式降噪自编码网络为基础,把深度学习用在诊断变压器设备故障方面,建立深层网络模型,采取逐层贪婪编码的方式进行自适应的非监督式预训练,实现高维深层故障特征的自适应提取和挖掘,进而使用反向传播算法对模型进行监督式微调。最后利用Softmax分类器,对故障进行分类输出。最后通过实例验证表明,提出的栈式降噪自编码网络能准确、有效地对变压器进行故障诊断,与传统方法相比,该方法提高了变压器故障诊断的准确率。 相似文献
4.
为了充分挖掘油中溶解气体分析(DGA)数据隐藏的故障特征信息,提出了一种基于相对重构贡献(rRBC)的变压器故障诊断新方法。该方法首先利用DGA数据建立主元分析(PCA)模型,基于故障重构的思想,计算样本各变量重构贡献率(RBC);考虑各变量重构贡献率之间的可比性,计算其相对重构贡献率并作为特征量,通过归一化处理来提取故障特征;然后,建立变压器分层故障诊断模型,利用灰关联熵(GRE)信息利用率高等优点,求出待诊模式与各标准模式的综合灰熵关联序,实现故障诊断。实例研究结果表明,所提出的相对重构贡献灰关联熵方法与重构贡献灰关联熵、灰关联熵方法相比,使特征样本集的可分性变大,提高了分类正确率。 相似文献
5.
为进一步提高变压器故障诊断效果,提出了一种基于加权综合损失优化深度学习和油中溶解气体分析(dissolved gas-in-oil analysis,DGA)的变压器故障诊断方法。该方法以DGA特征量为输入,以Softmax层各故障状态概率分布为输出,基于堆栈稀疏自编码深度学习理论构建了变压器故障诊断模型。针对常规交叉熵损失函数下,变压器故障诊断效果偏低,训练样本不平衡分布影响故障诊断水平的问题,采用加权综合损失函数对深度学习模型进行优化。案例分析结果表明:相比传统方法,本文方法可削弱训练样本不对称对变压器故障诊断的不利影响并提高变压器故障诊断水平,各训练集下,本文方法故障诊断准确率可保持在90%以上。 相似文献
6.
为解决传统变压器故障诊断存在监测大数据、小样本分类效果差等问题,提出基于变量预测模型(VPMCD)和堆栈降噪自编码(SDAE)的故障诊断方法。首先,采集变压器油色谱数据,并进行归一化处理;其次,对堆栈降噪自编码网络进行逐层训练学习,获取数据的高层特征表示并确定网络结构参数;然后,训练变量预测模型中四种数学模型,获取故障类型的最佳模型及相关参数;最后,采用少量有标签数据对整个模型进行微调,确定最优网络参数完成故障诊断。实验结果表明,该混合模型识别精度较高,可扩展性和鲁棒性较强。 相似文献
7.
深度学习模型凭借其良好的性能被引入到电力系统的暂态稳定性评估中,但进行在线应用时,须关注模型的抗噪能力和泛化能力。文中提出一种基于堆叠稀疏降噪自编码器(SSDAE)的暂态稳定性评估模型,首先对原始输入数据加入噪声得到受损数据样本,然后对受损数据样本进行高阶特征提取,最后将提取的高阶特征重构成未受损的数据,这一训练过程大大提高了模型的抗噪能力。同时,在对输入特征进行重构的过程中,对隐藏层神经元权重和激活程度进行抑制,实现模型的稀疏化,以此提高模型的泛化能力。仿真结果表明,相对于其他机器学习算法,SSDAE模型具有良好的抗噪能力和泛化能力。 相似文献
8.
基于Kohonen网络的电力变压器故障诊断方法 总被引:4,自引:0,他引:4
利用基于竞争学习理论的Kohonen自组织网络模型,设计了一种新的变压器故障诊断该当这。介绍了Kohonen网络的结构特点及其学习算法,阐述了利用Kohonen网络进行变压器故障诊断的具体方法,列举了诊断实例。 相似文献
9.
受数据样本难以区分和数据平衡性不佳影响,采用声振信号的变压器状态识别模型往往准确率低下。针对这一问题,引入了Focal损失,根据样本训练过程的准确度动态反馈权重,从而构成了Focal-XGBoost优化模型。先通过一组贴合变压器频谱的滤波器充分提取声振信号有效信息,再作XGBoost-PCA筛选降低样本维度。然后采用Focal损失优化原模型中的Softmax目标函数形成Focal-XGBoost模型,并在输入上述样本后根据准确率波动作Focal的超参数优化,进而输出变压器状态识别结果。10 kV和110 kV变压器的试验结果表明,相较传统SVM、KNN等学习模型,Focal-XGBoost减少了XGBoost测试样本中难分样本的误分量44.7%,从而使模型识别准确率更高;此外,非均匀提取在平均精度损失低于0.5%的基础上压缩50%样本空间,进一步降低了模型训练成本。 相似文献
10.
针对现有变压器油中溶解气体分析方法的不足,提出一种基于综合优化的故障诊断方法。将本体论与案例推理方法相结合,通过定义变压器故障诊断领域知识与案例知识的使用、聚集关系,建立了基于本体论的变压器故障案例库,并进行案例推理。若无匹配源案例,则转入基于判错损失最小的可拓推理机制,通过建立变压器各类故障的物元集模型,在考虑故障先验概率的基础上,引入错判损失最小函数,提高了可拓推理的准确度。通过对收集的200余例变压器故障实际DGA数据计算,并将诊断结果与IEC三比值法、可拓推理方法相比较,验证了所提方法的有效性。 相似文献
11.
电力变压器故障诊断中的测试数据信息不完备、有偏差,而贝叶斯网络处理不确定性问题能力强.提出了一种基于选择性贝叶斯分类器的、溶解气体分析结合其他电气试验结果的变压器故障诊断方法,并建立了变压器选择性贝叶斯故障诊断模型.详细阐述并验证了该方法解决信息不完备问题的优越性.该模型还可以通过不断积累完善训练样本,自动修正网络结构... 相似文献
12.
为了保证油浸式变压器故障诊断精度的同时,提高诊断方法的收敛速度以及泛化能力,提出一种基于DBN-SSAELM的变压器故障诊断方法。首先,利用深度置信网络(deep belief networks, DBN)对油中溶解气体浓度比值数据进行特征提取。其次,利用具有较强学习能力的极限学习机(extreme learning machine, ELM)替换传统DBN分类模型中的Softmax分类器,深入分析特征值与故障类型之间的关联性,提高模型的收敛速度。然后,利用麻雀搜索算法(sparrow search algorithm, SSA)优化ELM模型的输入权值和隐藏层节点偏置,以提高模型诊断结果的准确率和稳定性。最后,选用准确率、查全率、查准率和收敛速度对优化前后的模型进行性能评估。最终实验结果表明:所提出的DBN-SSAELM变压器故障诊断方法,故障诊断准确率高、泛化能力强、稳定性好,平均准确率达到96.50%,适用于变压器故障诊断。 相似文献
13.
14.
针对使用支持向量机(support vector machine,SVM)对变压器进行故障诊断时有效特征提取困难、模型参数难以选择的问题,提出一种基于特征提取与INGO-SVM的变压器故障诊断方法。首先,使用核主成分分析(kernel principal component analysis,KPCA)方法对构建的21维待选特征进行特征融合和低维敏感特征提取。其次,使用佳点集、随机反向学习和维度交叉学习等策略对北方苍鹰优化算法(northern goshawk optimization,NGO)进行改进。通过2个典型测试对改进北方苍鹰优化算法(improved northern goshawk optimization,INGO)进行性能测试,验证了INGO算法的优越性。然后,基于KPCA提取的低维敏感特征,使用INGO对SVM的参数进行组合寻优,建立基于KPCA特征提取与INGO-SVM的变压器故障诊断模型。最后,对不同变压器故障诊断模型进行实例仿真对比实验。结果表明:所提方法故障诊断精度高、稳定性好,更适用于变压器的故障诊断。 相似文献
15.
针对变压器故障类型的多样性以及故障信息的不确定性等问题,提出了证据理论与神经网络综合集成的故障诊断方法。为实现Dempster合成规则在强冲突证据间信息融合后可信度分配的合理赋值,引入了信任系数的概念,对融合结果进行修正,并应用于最大-最小蚂蚁系统与神经网络算法所形成证据体的合成之中。实验仿真结果表明,该方法可以在初级诊断模块的判断结果出现严重分歧的情况下,仍得到较好的符合性判定结论,从而实现对变压器故障的有效诊断。 相似文献
16.
基于BP神经网络的变压器故障诊断 总被引:3,自引:0,他引:3
针对变压器故障诊断的特点,提出了一种基于BP神经网络的电力变压器故障诊断方法。采用稳定、快速的Levenberg-Marquardt算法训练多层前向人工神经网络,克服了标准BP算法收敛速度慢、易陷入局部极小的缺陷;在隐含层节点数的选取上,采用简单实用的黄金分割优选法,可以节省成本,提高搜索效率。仿真结果表明,该方法具有运算速度快和拟合精度高等优点,满足电力变压器故障诊断的要求。 相似文献
17.
变压器运行过程中产生的振动噪声与其运行状态及内部缺陷情况直接相关,对其声纹信号开展特征分析,有助于进一步了解设备运行工况,保障电力系统安全稳定运行。文中以声纹特征分析为基础,兼顾诊断效率与准确性,提出一种基于卷积神经网络及集成学习模型的变压器缺陷诊断方法。该方法以变压器声纹数据的时域及频域信号为多通道输入混合特征,构建了基于卷积神经网络模型和声纹特征分析法的集成学习模型,可实现变压器声纹特征的有效识别,并通过由多个基学习器组成的集成学习模型提高了变压器缺陷诊断的准确性。基于文中所构建的变压器声纹样本库,可得到该方法对变压器单一缺陷的识别准确率为99.2%,对变压器混合缺陷的识别准确率为99.7%。研究结果表明该方法可有效识别变压器的运行状态,为变压器运维检修提供技术参考。 相似文献
18.
为了综合多维度信息,快速准确判断变压器缺陷,同时解决多维度信息融合权重难以确定的问题,文中基于深度学习理论,采用稀疏受限玻尔兹曼机搭建了用于故障诊断的深度学习故障分类模型,结合大型变压器的多维度监测量,提出了一种基于深度置信网络和多维度信息融合的变压器故障诊断方法。该方法能够利用变压器海量的无标签多维监测数据作为学习样本,只需对少量带标签数据进行辅助优化,根据变压器实时在线多维监测数据,被训练后的模型能够对变压器本体状态做出准确的故障诊断。对某市220 k V主变进行诊断测试,结果表明,文中提出方法的故障诊断准确率较现有方法高约4%,验证了该方法的可行性和有效性。 相似文献
19.
20.
针对当前单一的分析方法难以全面诊断变压器各种可能存在的故障类型,采用综合分析方法进行变压器故障诊断。研发变压器光谱气体采集和分析系统,得到各种气体含量;进而采用改良三比值法、大卫三角形法和立方体图示法三种综合方法进行变压器故障诊断。开发了基于综合分析方法的变压器诊断分析软件。该故障诊断软件包含运行状态、历史数据、谱图和数据与诊断四大功能模块。现场应用证明了基于综合分析方法的变压器故障诊断技术的有效性。 相似文献