共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
针对电力系统输出的周波波形多的特点,提出一种基于小波分析和支持向量机(SVM)的时序周波波形分类方法,实现三相电压源型逆变器的故障分类.利用离散正交小波变换(DOWT)将周波序列变换成小波系数矩阵,利用奇异值分解(SVD)的方法获得系数矩阵的奇异值向量,作为周波序列的特征值.建立基于新的Huffman树来实现支持向量机策略的多类分类模型.将奇异值分解得到的特征向量应用到该分类模型,判断逆变器的故障类型.仿真结果表明,该模型的平均期望准确率比基于普通二叉树的支持向量机多类模型高3.65%,分类准确率达到99.6%. 相似文献
3.
基于小波变换的支持向量机短期负荷预测 总被引:3,自引:0,他引:3
提出了一种基于小波分解和支持向量机的短期负荷预测方法.首先利用小波变换把负荷序列分解成不同频段的子序列,对高频序列利用软阀值消噪法去除负荷噪声;对降噪后的负荷序列利用不同的小波进行分解.然后用相匹配的支持向量机模型预测各子序列.仿真结果表明db4小波的预测精度最高,平均绝对预测误差为1.6692%.所得结果同直接用支持向量机预测结果进行比较表明,该方法是有效的。 相似文献
4.
将支持向量机SVM与遗传算法GA、粒子群算法PSO相结合,建立了基于改进支持向量机的压裂效果预测模型。该模型分别利用GA、PSO对SVM参数进行全局寻优,提高了SVM算法的预测精度和运行速度。实验结果表明,该模型明显优于其他主要非线性预测方法,为快速准确地预测压裂效果提供了新的方法和途径。 相似文献
5.
随着机器学习和人工智能技术的发展,复杂地层岩性的自动估计已成为石油工程中最关键的要求之一。通过对正安两口水平井测井数据进行小波降噪处理,提升数据信噪比。同时利用声学(AC)、补偿中子(CNL)、密度(DEN)、伽马(GR)、光电(PE)、铀含量(U)和钍含量(TH)测井数据作为训练和测试样本,运用支持向量机(SVM)建立岩相识别模型。岩性识别准确度可达95.2%,相较于未采用降噪技术的人工智能模型相比,预测准确度提升近5个百分点。 相似文献
6.
时间序列分析与支持向量机的滑坡位移预测 总被引:1,自引:0,他引:1
滑坡在变形演化过程中,遭受季节性外界影响因素的作用,变形位移时间曲线呈现出阶跃型特征.采用时间序列分析方法,将位移分解为趋势项和季节项.趋势项位移由坡体自身地质条件控制,利用多项式函数进行预测|季节项位移受降雨、库水位和地下水位等因素的季节性作用而变化.选取当月降雨量、累计前2个月降雨量、当月库水位高程、月库水位变化速率和当月地下水位高程作为影响因子,利用进化支持向量机耦合模型进行预测|通过时间序列加法模型得到滑坡总位移预测值.以三峡库区白家包滑坡为例,通过计算得到预测结果与实际监测值基本吻合,其中最大均方根误差为188,而最小相关系数为098.研究表明:基于时间序列分析与进化支持向量机的滑坡位移预测模型,有效反映了阶跃型滑坡位移变化规律与季节性影响因素之间的响应关系,是一种行之有效的滑坡位移预测方法. 相似文献
7.
高速公路动态交通流支持向量机预测模型 总被引:1,自引:0,他引:1
为了提高高速公路的交通运行效率,需要实时预测各路段交通流参数状况,通过对高速公路宏观动态交通流模型的分析,以及对SMO支持向量机参数选择的研究,提出了高速公路动态交通流支持向量机预测模型.以西安-宝鸡高速公路交通流信息采集数据对模型进行训练、测试和仿真,预测平均相对误差小于3.84%,表明了模型的有效性. 相似文献
8.
软件缺陷预测在软件系统开发的各个阶段发挥着极为重要的作用.利用机器学习的相关方法建立更好的预测模型已经被广泛研究.文章分析了支持向量机SVM作为二值分类模型应用到软件缺陷预测中的实现方法,构造了基于SVM的可迭代增强的缺陷预测模型SVM-DP.在13个基准数据集上开展比较实验,定量地分析了应用各种核函数对SVM-DP模型性能的影响.实验结果显示,应用线性内积核函数的SVM-DP具有最优的预测性能.同时,在与J48的比较实验中,最高超过J48预测模型20%的性能进一步证明了SVM-DP模型应用于软件缺陷预测的有效性. 相似文献
9.
基于神经网络和支持向量机的故障诊断 总被引:1,自引:0,他引:1
介绍了神经网络和支持向量机理论,对比分析两种理论的优缺点.通过试验,说明了神经网络和支持向量机在故障诊断中的应用方法,并通过改变学习样本数量,比较两种智能技术在故障诊断中的运用情况,验证了支持向量机在小样本情况下比神经网络具有更强的泛化能力. 相似文献
10.
基于交通流预测问题与函数估计和逼近问题是等价的的思想,提出一种基于小波分解-支持向量回归的短时交通量预测方法。首先对交通量数据进行小波分解,然后分别对基本信号和不同分辨率的干扰信号建立支持向量机模型,最后对多个预测结果进行合成,从而得到交通量的预测结果,并利用实例计算显示模型具有较低的误差,证明了该方法具有很好的可靠性。 相似文献
11.
Time series online prediction algorithm based on least squares support vector machine 总被引:1,自引:0,他引:1
Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive calculation of block matrix, a new time series online prediction algorithm based on improved LS-SVM was proposed. The historical training results were fully utilized and the computing speed of LS-SVM was enhanced. Then, the improved algorithm was applied to timc series online prediction. Based on the operational data provided by the Northwest Power Grid of China, the method was used in the transient stability prediction of electric power system. The results show that, compared with the calculation time of the traditional LS-SVM(75 1 600 ms), that of the proposed method in different time windows is 40-60 ms, proposed method is above 0.8. So the improved method is online prediction. and the prediction accuracy(normalized root mean squared error) of the better than the traditional LS-SVM and more suitable for time series online prediction. 相似文献
12.
13.
时间序列分析方法是动态系统建模的重要手段,传统的序列预测方法如统计和神经网络并不适用于复杂的非线性系统,为此引入了一种新的基于支持向量回归(SVR)的时间序列分析方法。为了降低计算的复杂度,采用了光滑化方法对SVR的基本算法进行改进,并应用于汽轮机振动数据序列,尝试建立汽轮机组振动状态模型。仿真结果表明:光滑支持向量回归(SSVR)算法具有良好的预测性能。与传统的时间序列预测方法(如神经网络)相比,SSVR算法具有更高的收敛速度和更好的拟合精度,有效地扩展了SVR的应用范围。 相似文献
14.
以三峡库区白水河滑坡为例,针对滑坡位移监测数据的非等距性和复杂性,结合非等距时间序列分析法、灰狼优化算法(GWO)和支持向量回归机(SVR)模型,提出新型非等距位移时序预测模型.利用自然三次样条插值法对滑坡位移数据进行等时距处理,基于时间序列分析理论将位移数据中的趋势成分和周期成分剥离,采用基于稳健最小二乘法的三次多项式拟合和GWO-SVR耦合模型分别对这两者进行预测,利用时间序列加法模型得到滑坡累计位移的预测值.研究表明,基于灰狼支持向量机的非等时距滑坡位移预测模型不仅预测精度高,预测误差较小,且寻优参数设置简单,计算收敛迅速. 相似文献
15.
复杂时间序列预测是时间序列分析的主要研究内容之一,已成为一个具有重要理论和实际应用价值的热点研究领域。基于小波和神经网络组合模型,提出一种多因子小波预测模型以提高水文时间序列的预测精度。并根据不同小波函数对水文时间序列数据的适应性,提出了一种基于加权相关系数的小波函数选择准则。以国家重要水文站淮河王家坝站汛期的日流量时间序列预测为例,对各种常用小波函数进行了实验。结果发现选择得到的Haar小波和B3 spline小波函数预测精度较高,从而验证了小波函数选取准则的有效性;通过和传统单序列小波神经网络模型比较,发现提出的多因子小波神经网络模型的预测合格率在不同预见期均提高了10%以上,并且对洪水高流量方向预测合格率提高了15%。 相似文献
16.
基于ART2神经网络的机械零件模式识别 总被引:1,自引:0,他引:1
为了实现可靠的机械零件识别,设计了一套基于ART2神经网络的零件形状识别系统,采用一种新的图像特征,即对预处理后的图像进行正交傅里叶-梅林矩变换.该特征对图像大小、方位、强度变化具有良好的不变性.同时采用ART2神经网络识别方法,并进行了算法改进.实验结果表明,该系统能够进行有效识别.最后,对正交傅里叶-梅林矩的计算进行分析,并提出进一步研究的方向. 相似文献
17.
工程项目工期风险的支持向量机预测模型 总被引:2,自引:0,他引:2
影响建筑施工项目的各种不确定因素错综复杂,为了在工程项目实施前确定工程的最终工期,在介绍支持向量机回归理论的基础上,本文提出了基于支持向量机的工程项目工期风险预测模型。根据以往同类工程的风险数据作为学习样本,训练并构建支持向量机来预测待建项目的工期风险水平。最后的实证研究表明了该预测体系的可行性及可靠性。 相似文献
18.
工程项目工期风险的支持向量机预测模型 总被引:1,自引:0,他引:1
影响建筑施工项目的各种不确定因素错综复杂,为了在工程项目实施前确定工程的最终工期,在介绍支持向量机回归理论的基础上,本文提出了基于支持向量机的工程项目工期风险预测模型。根据以往同类工程的风险数据作为学习样本,训练并构建支持向量机来预测待建项目的工期风险水平。最后的实证研究表明了该预测体系的可行性及可靠性。 相似文献
19.
Slope stability estimation is an engineering problem that involves several parameters. To address these problems, a hybrid model based on the combination of support vector machine(SVM) and particle swarm optimization(PSO) is proposed in this study to improve the forecasting performance. PSO was employed in selecting the appropriate SVM parameters to enhance the forecasting accuracy. Several important parameters, including the magnitude of unit weight, cohesion, angle of internal friction, slope angle, height, pore water pressure coefficient, were used as the input parameters, while the status of slope was the output parameter. The results show that the PSO-SVM is a powerful computational tool that can be used to predict the slope stability. 相似文献