首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
在高速永磁电机中,转子涡流损耗会使转子温度升高,影响电机效率等性能,甚至导致永磁体过热退磁.针对高速永磁电机中的转子涡流损耗问题,进行了解析分析和有限元计算,分析了产生转子涡流损耗的谐波来源,研究了不同定转子结构电机的转子涡流损耗,分析了定子槽数、槽口宽度、气隙长度、屏蔽层、定子齿开辅助槽对转子涡流损耗的影响.结果表明,增加定子槽数、减小槽口宽度、增加气隙长度可以减小转子涡流损耗;在护套和永磁体中间加一层高电导率屏蔽层能有效减小永磁体的涡流,且选择合适的屏蔽层厚度能够进一步减小转子涡流损耗;提出了使用合适宽度、深度、角度和槽型的辅助槽来减小转子涡流损耗、帮助电机散热的新方法.对高速永磁电机的研制具有重要的理论研究和工程应用价值.  相似文献   

2.
陈丽香  李敏 《微电机》2014,(3):16-19
钕铁硼永磁材料具有较大的电导率,即使电机额定转速较低时,依然能在电机永磁体中产生较大的涡流损耗,影响电机性能,因此有必要对低速大转矩永磁同步电机永磁体涡流损耗进行研究。设计5台不同极槽配合的低速大转矩表贴式永磁同步电机,采用三维时步有限元法计算5台电机的永磁体涡流损耗。针对不同极槽配合电机气隙磁密分数次谐波含量对永磁体涡流损耗的影响进行分析。结果显示,分数次谐波含量越大永磁体涡流损耗越大。  相似文献   

3.
高频非晶合金轴向磁通永磁电机永磁体涡流损耗分布不均,所以在电机温度场计算时不能简单地给永磁体赋一个平均生热率,需要根据永磁体不同位置的涡流损耗密度赋相应的生热率。本文将永磁体分成多块,利用有限元分别计算每块永磁体上的涡流损耗大小,给出了永磁体的不同位置涡流损耗分布规律。根据涡流损耗分布规律,改进了的永磁体分块原则,提高了电机温升计算效率。最后,利用有限体积法对考虑涡流损耗分布和未考虑涡流损耗分布两种情况下电机的温升分别进行了计算,结果显示,考虑涡流损耗分布计算出的电机温升结果更接近实测值。  相似文献   

4.
高频轴向磁通永磁电机永磁体涡流损耗三维解析模型   总被引:1,自引:0,他引:1  
针对现有二维解析模型在计算轴向磁通永磁电机永磁体涡流损耗存在精度不足的问题,该文提出一种能够精确计算该类电机永磁体涡流损耗的新型三维解析模型。该模型利用精确子域法和电阻网络模型,能够同时考虑定子开槽、定子谐波电流、涡流反作用和涡流三维分布的影响。利用有限元法验证了精确子域模型计算得到的空载和电枢磁场分布,并在理想空载下,验证了解析模型永磁体表面涡流密度和永磁体涡流损耗值,分析电机在高频运行下涡流反作用对永磁体涡流损耗的影响。最后,对1台7kW、4000rpm的轴向磁通永磁电机进行空载脉宽调制(pulsewidthmodulated,PWM)电压供电实验和空载正弦波电压供电实验,得到因PWM谐波电流引起的永磁体涡流损耗,将实验结果,有限元结果与解析结果作对比,验证了该解析模型的正确性。  相似文献   

5.
永磁体涡流损耗的分析   总被引:1,自引:0,他引:1  
《微电机》2015,(6)
表面式永磁电机永磁体直接与气隙接触,变频供电时产生的较大含量谐波将在永磁体内产生一定的涡流损耗,且由于转子散热较差,将导致永磁体温升较高,容易造成永磁体发生不可逆去磁风险。因此对永磁体涡流损耗的研究有其必要性与重要性。文中针对影响永磁体涡流损耗较大的气隙长度、定子槽口宽度、气隙长度与槽口宽度的配合、永磁体削角等进行分析,通过合理选择电机结构尺寸来降低永磁体涡流损耗,并利用三维有限元法与解析法验证计算规律的正确性。  相似文献   

6.
《微电机》2015,(4)
分数槽集中绕组永磁同步电机具有易于下线,铜耗低,转矩密度大等特点,因此得到了广泛地应用,但是分数槽集中绕组永磁同步电机的反电动势谐波含量较大,电机的涡流损耗比较大。本文提出了一种通过优化永磁同步电机永磁体形状来降低永磁同步电机涡流损耗的方法。该方法通过优化永磁体形状从而改善永磁体磁势的波形,从而改善电机反电动势的波形,进而降低永磁同步电机的涡流损耗。通过理论分析,仿真对比证明该方法可以大幅度降低的电机的涡流损耗,验证了该方法的可行性,且效果明显。  相似文献   

7.
基于涡流损耗分析的永磁型无轴承电机优化   总被引:1,自引:0,他引:1  
针对永磁型无轴承电机在高速运行时,转子涡流损耗导致永磁体发热严重,导致永磁体存在不可逆退磁的难题。在分析永磁型无轴承电机转矩和径向力产生机理的基础上,研究了径向力、转矩绕组磁场和悬浮绕组磁场的相对运动关系,给出了永磁型无轴承电机单一方向稳定可控径向力的产生条件,采用2D耦合电路瞬态有限元法,计算了转子空载涡流损耗,比较了永磁型无轴承电机极对数为PB=PM+1和PB=PM-1时的转子涡流损耗。研究结果表明,永磁型无轴承电机转子涡流损耗主要是由悬浮绕组磁场产生,采用PB=PM+1结构时,转子涡流损耗最小,PM=1,PB=2结构最适合高速运行。  相似文献   

8.
介绍了一种新型横向磁通永磁电机的工作原理,并分析了电机的结构特点。通过Maxwell软件建立该横向磁通永磁电机的三维有限元模型,并对电机在运行状态下的电磁分布进行仿真,计算永磁体涡流损耗平均值。仿真结果显示,定子与转子间气隙存在明显的漏磁现象,对定子形状进行改进来减小漏磁,并通过计算表明,改进后电磁转矩增大了27. 3%;对永磁体涡流损耗进行了分析,提出在转子内侧添加铜层来减小永磁体涡流损耗的方法,并通过设置变量计算出该方案的最佳铜层厚度。  相似文献   

9.
针对提高永磁电机温升计算准确性的问题,提出一种计及永磁体涡流损耗分布特性的实时热计算方法。依据温度对电机内各材料属性有所影响,且永磁体涡流损耗有其特有的分布特性的事实,提出并采用计及永磁体涡流损耗分布特性的实时热计算方法,以一台10 k W变频驱动永磁同步电动机为例进行实例计算,与普通未计及永磁体涡流损耗分布特性、没有使用实时热计算方法的温升计算方法对比,经在线温升测量,验证了计及永磁体涡流损耗分布特性的实时热计算方法能有效提高温升计算的准确性,可使计算结果与实验结果之间的误差缩小到0.5%之内。  相似文献   

10.
应用于飞轮储能的高速永磁同步电机涡流损耗的研究对于电机可靠性具有重要意义。通过有限元仿真分别计算永磁体和护套中的涡流损耗,并重点研究高速电机护套材料电导率的不同对于高速电机转子涡流损耗的影响,以及永磁体与护套电导率的比值对转子总损耗的影响。结果表明:在选择护套时并不是导电率越小越好,只有当小于某个特定电导率时,总损耗才能降低;并且护套材料的电导率越大,其对永磁体中的涡流损耗的屏蔽效果越明显,护套材料电导率的大小,对损耗在护套和永磁体中的分布起了一定的分配作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号