首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 31 毫秒
1.
A large number of substrates potential for removal of phosphorus (P) in wastewater has been reviewed. The substrates consist of natural materials, industrial by-products and man-made products. Most substrates have been investigated in batch and column studies in the laboratory; others have also been tested in field trials. The results from these investigations vary, but a few substrates, e.g. wollastonite, slag material and, to some extent, light weight aggregate products, have demonstrated promising properties with regard to P-sorption capacity and hydraulics. The problems of normalisation of data are discussed, as well as the substrates potential benefits for on-site wastewater treatment.  相似文献   

2.
In this study, ferric chloride (FeCl(3)) flocculation was used as a pretreatment to ultrafiltration (UF) in treating synthetic wastewater containing synthetic organic matter (SOM). The effect of flocculant dose was studied in terms of organic removal and membrane flux decline. The UF with optimum dose of FeCl(3) (68 mg L(-1)) did not experience any flux decline during the whole operation of 6 h. The preflocculation with a smaller dose of 20 mg L(-1) of FeCl(3) led to a severe flux decline in the UF (more than 65% in 6 h). To understand the phenomenon of the flux decline of UF, the MW ranges of SOM removed by different doses of FeCl(3) and by the post treatment of UF were studied. Flocculation with at least 50 mg L(-1) of FeCl(3) dose was found to be necessary to avoid any significant flux decline and to obtain superior DOC removal.  相似文献   

3.
Sewage treatment plants are frequently associated with the release of xenobiotics and, consequently, with alterations of the reproductive function induced by many of these substances in aquatic organisms. In order to assess the impacts of sewage treatment plant (STP) discharges in polluted rivers, two sentinel species (gudgeon Gobio gobio and stoneloach Barbatula barbatula) were caught during their reproductive cycle upstream and downstream two STPs (STP1--Goffontaine, STP2--Wegnez). Gonadosomatic index, histological (testicular and ovarian stages, atretic follicles, intersexuality) and endocrine (sex steroids, aromatase activity, alkali-labile phosphorus) parameters were assayed. In brief, the results revealed no systematic significant differences (p<0.05) between upstream and downstream sites, whatever the STP, species or sampling period. However, stoneloach females displayed some signs of reproductive impairment and endocrine disruption downstream STP1 (reduced GSI, oocyte diameter and ALP concentrations, increased proportion of atretic follicles) and STP2 (changes in gonadal aromatase activity and plasma levels of 11-KT and T). Few significant changes were observed for gudgeon males and females while there were no significant differences between upstream and downstream sites for stoneloach males. Moreover, plasma E(2) concentrations recorded in gudgeon males sampled in all sites were as high as in females and this was confirmed by high ALP levels. Besides, spermatogenesis of gudgeon males was delayed in STP1 upstream and downstream sites compared to the corresponding sites in STP2. These observations for gudgeon males do not seem related to STP discharge but to a probable estrogenicity of the river. Therefore, as shown by the results, stoneloach seemed more sensitive than gudgeon to STP discharges. In the present study, sewage treatment plant discharges do not substantially impair fish reproduction. In this respect, caution is required when generalising negative impacts of STP discharges.  相似文献   

4.
This study aims at evidencing the effects of lime treatment on the microstructure and hydraulic conductivityof a compacted expansive clay, with emphasis put on the effect of lime hydration and modification.For this purpose, evolutions of hydraulic conductivity were investigated for both lime-treatedand untreated soil specimens over 7 d after full saturation of the specimens and their microstructureswere observed at the end. Note that for the treated specimen, dry clay powder was mixed with quicklimeprior to compaction in order to study the effect of lime hydration. It is observed that lime hydration andmodification did not affect the intra-aggregate pores but increased the inter-aggregates pores size. Thisincrease gave rise to an increase of hydraulic conductivity. More precisely, the hydraulic conductivity oflime-treated specimen increased progressively during the first 3 d of modification phase and stabilisedduring the next 4 d which correspond to a short period prior to the stabilisation phase. The microstructureobservation showed that stabilisation reactions took place after 7 d. Under the effect of stabilisation,a decreasing hydraulic conductivity can be expected in longer time due to the formation ofcementitious compounds. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.  相似文献   

5.
《Building and Environment》2002,37(11):1181-1191
Surface alterations of the original limestone and the efficiency of several cleaning methods were investigated on the Corfu Venetian Fortress facade. Black crusts of gypsum dendrites and loose depositions or black-grey calcareous encrustations in combination with biological decay were identified as main decay processes. The cleaning treatments, chosen according to their acting on the stone surface, were: sepiolite for solvent action, ammonium bicarbonate for exchange action, EDTA for the chemical chelating action, hydrogen peroxide for chemical action on biological species and nylon brushes for physical action.Each cleaning method's efficiency and counteractions were evaluated by laboratory examinations concerning the morphology and the composition of the surface with SEM observations and X-ray microanalysis, before and after treatment and during ageing tests in sulphur dioxide and humidity atmosphere.The used methodology creates a sound basis for the evaluation and proper selection of a cleaning method, which should be highly efficient and with limited counteractions to the stone.  相似文献   

6.
The feasibility of low-temperature (7 °C) anaerobic digestion for the treatment of a trichloroethylene (TCE) contaminated wastewater was investigated. Two expanded granular sludge bed (EGSB) bioreactors (R1 and R2) were employed for the mineralisation of a synthetic volatile fatty acid based wastewater at an initial organic loading rate (OLR) of 3 kg COD m−3 d−1, and an operating temperature of 15 °C. Successive reductions in OLR to 0.75 kg COD m−3 d−1, and operational temperature to 7 °C, resulted in stable bioreactor operation by day 417, with COD removal efficiency and biogas CH4 content ≥74%, for both bioreactors. Subsequently, the influent to R1 was supplemented with increasing concentrations (10, 20, 30 mg l−1) of TCE, while R2 acted as a control. At an influent TCE concentration of 30 mg l−1, although phase average TCE removal rates of 79% were recorded, a sustained decrease in R1 performance was observed, with COD removal of 6%, and % biogas CH4 of 3% recorded on days 595 and 607, respectively. Specific methanogenic activity (SMA) assays identified a general shift from acetate- to hydrogen-mediated methanogenesis in both R1 and R2 biomass, while toxicity assays confirmed an increased sensitivity of the acetoclastic community in R1 to TCE and dichloroethylene (DCE), which contributed to acetate accumulation. Quantitative Polymerase Chain Reaction (qPCR) analysis of the methanogenic community confirmed the dominance of hydrogenotrophic methanogens in both R1 and R2, representing 71-89% of the total methanogenic population, however acetoclastic Methanosaeta were the dominant organisms, based on 16S rRNA gene clone library analysis of reactor biomass. The greatest change in the bacterial community, as demonstrated by UPGMA analysis of DGGE banding profiles, was observed in R1 biomass between days 417 and 609, although 88% similarity was retained between these sampling points.  相似文献   

7.
The removal of MS2, Qβ and GA, F-specific RNA bacteriophages, potential surrogates for pathogenic waterborne viruses, was investigated during a conventional drinking water treatment at pilot scale by using river water, artificially and independently spiked with these bacteriophages. The objective of this work is to develop a standard system for assessing the effectiveness of drinking water plants with respect to the removal of MS2, Qβ and GA bacteriophages by a conventional pre-treatment process (coagulation-flocculation-settling-sand filtration) followed or not by an ultrafiltration (UF) membrane (complete treatment process). The specific performances of three UF membranes alone were assessed by using (i) pre-treated water and (ii) 0.1 mM sterile phosphate buffer solution (PBS), spiked with bacteriophages. These UF membranes tested in this work were designed for drinking water treatment market and were also selected for research purpose.The hypothesis serving as base for this study was that the interfacial properties for these three bacteriophages, in terms of electrostatic charge and the degree of hydrophobicity, could induce variations in the removal performances achieved by drinking water treatments.The comparison of the results showed a similar behaviour for both MS2 and Qβ surrogates whereas it was particularly atypical for the GA surrogate. The infectious character of MS2 and Qβ bacteriophages was mostly removed after clarification followed by sand filtration processes (more than a 4.8-log reduction) while genomic copies were removed at more than a 4.0-log after the complete treatment process. On the contrary, GA bacteriophage was only slightly removed by clarification followed by sand filtration, with less than1.7-log and 1.2-log reduction, respectively. After the complete treatment process achieved, GA bacteriophage was removed with less than 2.2-log and 1.6-log reduction, respectively.The effectiveness of the three UF membranes tested in terms of bacteriophages removal showed significant differences, especially for GA bacteriophage. These results could provide recommendations for drinking water suppliers in terms of selection criteria for membranes.MS2 bacteriophage is widely used as a surrogate for pathogenic waterborne viruses in Europe and the United States. In this study, the choice of MS2 bacteriophage as the best surrogate to be used for assessment of the effectiveness of drinking water treatment in removal of pathogenic waterborne viruses in worst conditions is clearly challenged. It was shown that GA bacteriophage is potentially a better surrogate as a worst case than MS2. Considering GA bacteriophage as the best surrogate in this study, a chlorine disinfection step could guaranteed a complete removal of this model and ensure the safety character of drinking water plants.  相似文献   

8.
Ozonation as advanced wastewater treatment method is an effective technique for micropollutant removal. However, the application of this method carries the inherent danger to produce toxic oxidation byproducts. For an ecotoxicological assessment conventionally treated wastewater, wastewater after ozonation and ozonated wastewater after sand filtration were evaluated in parallel at an operating treatment plant via the fish early life stage toxicity test (FELST) using rainbow trout (Oncorhynchus mykiss).The FELST revealed a considerable developmental retardation of test organisms exposed to ozonated WW. This was accompanied by a significant decrease in body weight and length compared to reference water, to the conventionally treated WW and to the ozonated water after sand filtration. Hence sand filtration obviously prevents from adverse ecotoxicological effects of ozonation.An additional test with yolk-sac larvae resulted in a significant reduction of vitellogenin levels in fish exposed to ozonated wastewater compared to fish reared in conventionally treated wastewater. This demonstrates the effective removal of estrogenic activity by ozonation.Adverse ozonation effects may have been a result of the conversion of chemicals into more toxic metabolites. However, sand filtration reduced toxication effects indicating that these oxidation byproducts are readily degradable or adsorbable. The results indicate that in any case ozonation should not be applied without subsequent post treatment appropriate for oxidation byproducts removal (e.g. sand filtration).  相似文献   

9.
Several appropriate technology alternatives are suggested for water and wastewatei treatment in less developed countries. Large‐scale water supply systems employing conventional water treatment methods should be replaced by several small‐scale water treatment units utilizing appropriate water treatment methods.

Conventional sewerage systems should be replaced by low cost on‐site sanitation systems and several other low‐cost wastewater treatment methods such as oxidation ponds, aerated lagoons and anaerobic lagoons. Wastewater renovation and re‐use should be actively encouraged in view of dwindling water resources in these countries.  相似文献   

10.
Because of the low energy consumption of aeration, strong nutrient removal capacity, low greenhouse gas emissions and high resource recovery potential, the wastewater treatment process using microalgal–bacterial consortia is considered as an excellent alternative to the traditional activated sludge wastewater treatment process. In this review, the wastewater treatment process based on microalgal–bacterial consortia and its greenhouse gas emission reduction mechanism are introduced. The potential advantages and constraints of the process in carbon neutral wastewater treatment were highlighted and critically discussed. The environmental impact of wastewater treatment, the research progress of environment-friendly treatment technologies and the challenges faced by integrating these technologies are discussed. However, the wastewater treatment process based on microalgae–bacteria consortia still needs to be studied. In the future, it is necessary to optimize the scheme for quantifying the environmental impact of wastewater treatment and further expand the recycling rate and cost value of wastewater resources.  相似文献   

11.
This study assessed the potential reuse of an aluminium coagulated drinking water treatment sludge (Al‐DWTS) as a main substrate in constructed wetland to replace soil for the treatment of P‐enriched wastewater. The adsorption isotherm and kinetics of phosphorus (P) removal from high‐P solution by Al‐DWTS and a local soil from Bailieborough, Ireland, were studied and compared. The P adsorption process was examined as a function of contact time, initial P concentration, pH and temperature. Data of P adsorption were well fitted to the Langmuir and the Freundlich isotherms but the Freundlich isotherm had a higher correlation coefficient. The P adsorption capacity on the Al‐DWTS and the soil tended to increase with an increase in temperature. The maximum P adsorption capacity of the Al‐DWTS and the soil was 39.4 mg P mg?1 and 9.5 mg P mg?1, respectively, at conditions of pH of 4.0 and temperature of 23°C. Kinetics studies show that adsorption in both cases followed pseudo‐second‐order kinetics. The fact that the Al‐DWTS exhibited a significantly higher P adsorption capacity at high P solution compared with the soil suggests that Al‐DWTS can be a ‘novel‐waste’ bioadsorbent with promising application in wastewater treatment engineering, such as constructed wetland systems.  相似文献   

12.
13.
Weiss S  Reemtsma T 《Water research》2008,42(14):3837-3847
The potential of a lab-scale membrane bioreactor (MBR) to remove polar pollutants from municipal wastewater was studied for industrial and household chemicals over a period of 22 months parallel to a conventional activated sludge (CAS) treatment. For half of the compounds, such as benzotriazole, 5-tolyltriazole (5-TTri), benzothiazole-2-sulfonate and 1,6-naphthalene disulfonate (1,6-NDSA), removal by MBR was significantly better than in CAS, while no improvement was recorded for the other half (1,5-NDSA, 1,3-NDSA, 4-TTri and naphthalene-1-sulfonate). The influence of operational conditions on trace pollutant removal by MBR was studied but no significant effects were found for variation of hydraulic retention time (7h-14h) and sludge retention time (26d-102d), suggesting that the lowest values selected have already been high enough for good removal. It is shown that the seemingly inconsistent results reported here and in previous studies regarding the comparison of trace pollutant removal in MBR and CAS are highly consistent. MBR is neither superior for well degradable compounds that are already extensively degraded in CAS treatment nor for recalcitrant compounds that are not amenable to biodegradation. For most compounds of intermediate removal in CAS treatment (15-80%), among them pharmaceuticals, personal care products and industrial chemicals, the MBR is clearly superior and reduces the effluent concentration by 20-50%. Despite of this clear benefit of MBR, the effect is not pronounced enough to serve as a sole argument for employing MBR in municipal wastewater treatment.  相似文献   

14.
Adding Fe(III) into a MEC – anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC – anaerobic reactor with dosing Fe(OH)3 (R1), an anaerobic reactor with dosing Fe(OH)3 (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)3 enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real – time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1.  相似文献   

15.
SANI (Sulfate reduction, Autotrophic denitrification and Nitrification Integrated) process has been approved to be a sludge-minimized sewage treatment process in warm and coastal cities with seawater supply. In order to apply this sulfur-based process in inland cold areas, wet flue gas desulfurization (FGD) can be simplified and integrated with SANI process, to provide sulfite as electron carrier for sulfur cycle in sewage treatment. In this study, a lab-scale system of the proposed novel process was developed and run for over 200 days while temperature varied between 30 and 5 °C, fed with synthetic FGD wastewaters and sewage. The sulfite-reducing upflow anaerobic sludge bed (SrUASB) reactor, as the major bioreactor of the system, removed 86.9% of organics while the whole system removed 94% of organics even when water temperature decreased to around 10 °C. The bactericidal effect of sulfite was not observed in the SrUASB reactor, while thiosulfate was found accumulated under psychrophilic conditions. The sludge yield of the SrUASB reactor was determined to be 0.095 kg VSS/kg COD, higher than of sulfate reduction process but still much lower than of conventional activated sludge processes. The dominant microbes in the SrUASB reactor were determined as Lactococcus spp. rather than sulfate-reducing bacteria, but sulfite reduction still contributed 85.5% to the organic carbon mineralization in this reactor. Ammonia and nitrate were effectively removed in the aerobic and anoxic filters, respectively. This study confirms the proposed process was promising to achieve sludge-minimized sewage treatment integrating with flue gas desulfurization in inland and cold areas.  相似文献   

16.
17.
A multistage treatment system, at a scale close to the industrial, was designed for the treatment of a mature raw landfill leachate, including: a) an activated sludge biological oxidation (ASBO), under aerobic and anoxic conditions; b) a solar photo-Fenton process, enhancing the bio-treated leachate biodegradability, with and without sludge removal after acidification; and c) a final polishing step, with further ASBO.  相似文献   

18.
Innovative disinfection technologies are being studied for seawater, seeking a viable alternative to chlorination. This study proposes the use of H2O2/UV254 and photo-Fenton as disinfection treatment in seawater. The irradiations were carried out using a sunlight simulator (Suntest) and a cylindrical UV reactor. The efficiency of the treatment was compared for Milli-Q water, Leman Lake water and artificial seawater. The presence of bicarbonates and organic matter was investigated in order to evaluate possible effects on the photo-Fenton disinfection treatment. The photo-Fenton treatment, employing 1 mg L−1 Fe2+ and 10 mg L−1 of H2O2, led to the fastest bacterial inactivation kinetics. Using H2O2/UV254 high disinfection rates were obtained similar to those obtained with photo-Fenton under UV254 light. In Milli-Q water, the rate of inactivation for Escherichia coli was higher than in Leman Lake water and seawater due to the lack of inorganic ions affecting negatively bacteria inactivation. The presence of bicarbonate showed scavenging of the OH radicals generated in the treatment of photo-Fenton and H2O2/UV254. Despite the negative effect of inorganic ions, especially HCO3-, the disinfection treatments with AOPs in lake water and seawater improved significantly the disinfection compared to light alone (simulated sunlight and UV254). In the treatment of photo-Fenton with simulated sunlight, dissolved organic matter had a beneficial effect by increasing the rate of inactivation. This is associated with the formation of Fe3+-organo photosensitive complexes leading to the formation of ROS able to inactivate bacteria. This effect was not observed in the photo-Fenton with UV254. Growth of E. coli surviving in seawater was observed 24 and 48 h after treatment with UV light. However, growth of surviving bacteria was not detected after photo-Fenton with UV254 and H2O2/UV254 treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号