首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F.R. Slater 《Water research》2010,44(17):4908-4923
The role of Candidatus “Accumulibacter phosphatis” (Accumulibacter) in enhanced biological phosphorus removal (EBPR) is well established but the relevance of different Accumulibacter clades to the performance of EBPR systems is unknown. We developed a terminal-restriction fragment length polymorphism (T-RFLP) technique to monitor changes in the relative abundance of key members of the bacterial community, including Accumulibacter clades, in four replicate mini-sequencing batch reactors (mSBRs) operated for EBPR over a 35-day period. The ability of the T-RFLP technique to detect trends was confirmed using fluorescence in situ hybridisation (FISH). EBPR performance varied between reactors and over time; by day 35, performance was maintained in mSBR2 whilst it had deteriorated in mSBR1. However, reproducible trends in structure-function relationships were detected in the mSBRs. EBPR performance was strongly associated with the relative abundance of total Accumulibacter. A shift in the ratio of the dominant Accumulibacter clades was also detected, with Type IA associated with good EBPR performance and Type IIC associated with poor EBPR performance. Changes in ecosystem function of the mSBRs in the early stages of the experiment were more closely associated with changes in the abundance of (unknown) members of the flanking community than of either Accumulibacter or Candidatus “Competibacter phosphatis”. This study therefore reveals a hitherto unrecorded and complex relationship between Accumulibacter clades, the flanking community and ecosystem function of laboratory-scale EBPR systems.  相似文献   

2.
In activated sludge bioreactors, aerobic heterotrophic communities efficiently remove organics, nutrients, toxic substances, and pathogens from wastewater, but the dynamics of these communities are as yet poorly understood. A macroecology metric used to quantify community shifts is the taxa-time relationship, a temporal analog of the species-area curve. To determine whether this metric can be applied to full-scale bioreactors, activated sludge samples were collected weekly over a one-year period at a local municipal wastewater treatment plant. Bacterial community dynamics were evaluated by monitoring 16S rRNA genes using Terminal Restriction Fragment Length Polymorphism (T-RFLP), corroborated by clone libraries. Observed taxa richness increased with time according to a power law model, as predicted by macroecological theory, with a power law exponent of w = 0.209. The results reveal strong long-term temporal dynamics during a period of stable performance (BOD removal and nitrification). Community dynamics followed a gradual succession away from initial conditions rather than periodicity around a mean “equilibrium”, with greater within-month then among-month community similarities. Changes in community structure were significantly associated via multivariate statistical analyses with dissolved oxygen, temperature, influent silver, biomass (MLSS), flow rate, and influent nitrite, cadmium and chromium concentrations. Overall, our results suggest patterns of bacterial community dynamics likely regulated in part by operational parameters and provide evidence that the taxa-time relationship may be a fundamental ecological pattern in macro- and microbial systems.  相似文献   

3.
Inefficient removal of estrone (E1) in wastewater treatment plants (WWTPs) causes feminizing effects in male aquatic creatures. As E1 is mainly removed by biodegradation, investigation of E1 degradation is important to determine better removal strategies. Using microautoradiography-fluorescence in situ hybridization (MAR-FISH), we demonstrated that the structures of [3H]E1-incorporating bacterial communities were different at different E1 concentrations applied to activated sludge. At 200 μg/L E1, almost all [3H]E1-incorporating cells were associated with either Betaproteobacteria or Gammaproteobacteria (60% and 40% of MAR (+) cells, respectively). The proportion of Betaproteobacteria and Gammaproteobacteria in the total number of [3H]E1-incorporating cells decreased as the concentration of E1 decreased. In contrast, the proportion of Alphaproteobacteria in the total number of [3H]E1-incorporating cells increased as the concentrations of E1 decreased. At the lowest applied concentration (540 ng/L), almost all the [3H]E1-incorporating cells were Alphaproteobacteria (96%). The results of MAR-FISH applied to sludge samples collected from various plant locations and activated sludge processes, and during different seasons also demonstrated the high contribution of Alphaproteobacteria to the entire E1-degrading bacterial community (50.4 ± 11% of the total number of [3H]E1-incorporating cells) at 1 μg/L E1. Since the E1 concentration in domestic wastewater is at sub-μg/L levels, the key E1 degraders in activated sludge of domestic WWTPs are probably be Alphaproteobacteria. All [3H]E1-incorporating Alphaproteobacteria were hybridized with probe ALF968. Few MAR (+) cells were Sphingomonadales. An E1-degrading bacterial community at low E1 concentration appeared to consist of diverse bacterial groups of Alphaproteobacteria. This study suggested that substrate concentration is an essential factor for revealing E1-degrading bacteria in complex communities.  相似文献   

4.
In an earlier phase of this study, we compared the performances of pilot scale treatment systems operated in either a conventional enhanced biological phosphorus removal (CEBPR) mode, or a membrane enhanced biological phosphorus removal (MEBPR) mode. In the present investigation, we characterized the bacterial community populations in these processes during parallel operation with the same municipal wastewater feed. The objectives of the study were (1) to assess the similarity of the bacterial communities supported in the two systems over time, (2) to determine if distinct bacterial populations are associated with the MEBPR and CEBPR processes, and (3) to relate the dynamics of the community composition to changes in treatment process configuration and to treatment process performance. The characteristics of the bacterial populations were first investigated with ribosomal intergenic spacer analysis, or RISA. To further understand the bacterial population dynamics, important RISA phylotypes were isolated and identified through 16S RNA gene sequencing.The parallel MEBPR and CEBPR systems developed bacterial communities that were distinct. The CEBPR community appeared to exhibit greater diversity, and this may have been the primary reason why the CEBPR treatment train demonstrated superior functional stability relative to the MEBPR counterpart. Moreover, the more diverse bacterial population apparent in the CEBPR system was observed to be more dynamic than that of the MEBPR process.Several RISA bands were found to be characteristic of either the membrane or conventional biological system. In particular, the MEBPR configuration appeared to be selective for the slow-growing organism Magnospira bakii and for the foam-associated Microthrix parvicella and Gordonia sp., while gravity separation led to the washout of M. parvicella. In both pilot trains, sequence analysis confirmed the presence of EBPR-related organisms such as Accumulibacter phosphatis. The survey of the CEBPR system also revealed many uncultured organisms that have not been well characterized. The study demonstrated that a simple replacement of a secondary clarifier with membrane solids-liquid separation is sufficient to shift the composition of an activated sludge microbial community significantly.  相似文献   

5.
Kotay SM  Datta T  Choi J  Goel R 《Water research》2011,45(2):694-704
This research demonstrates the first ever application of lytic bacteriophage (virus) mediated biocontrol of biomass bulking in the activated sludge process using Haliscomenobacter hydrossis as a model filamentous bacterium. Bacteriophages are viruses that specifically infect bacteria only. The lytic phage specifically infecting H. hydrossis was isolated from the mixed liquor of a local wastewater treatment plant. The isolated bacteriophage belongs to the Myoviridae family with a contractile tail (length-126 nm; diameter-18 nm) and icosahedral head (diameter-81 nm). Titer of the isolated phage with H. hydrossis was calculated to be 5.2 ± 0.3 × 105 PFU/mL and burst size was found to be 105 ± 7 PFU/infected cell. The phage was considerably stable after exposure to high temperature (42 °C) and pH between 5 and 8, emphasizing that it can withstand the seasonal/operational fluctuations under real-time applications. Phage to host (bacteria) ratio for the optimal infection was found to be 1:1000 with ∼54% host death. The isolated phage showed no cross infectivity with other bacteria most commonly found in activated sludge systems, thus validating its suitability for biocontrol of filamentous bulking caused by H. hydrossis. Following the phage application, successful reduction in sludge volume index (SVI) from 155 to 105 was achieved, indicating improved biomass settling. The application of phage did not affect nutrient removal efficiency of the biomass, suggesting no collateral damage. Similar to phage therapy in medical applications, phage-mediated biocontrol holds a great potentiality for large-scale applications as economic agent in the mitigation of several water, wastewater and environmental problems. Present study in this direction is a novel effort.  相似文献   

6.
Kim JY  Woo SH  Lee MW  Park JM 《Water research》2012,46(8):2805-2814
Two-stage upflow anaerobic sludge blanket (UASB) process was investigated as an efficient process configuration option for the treatment of purified terephthalic acid (PTA) wastewater. To study its feasibility in a defined condition, synthetic wastewater containing only the major pollutants (i.e., acetate, benzoate, terephthalate and p-toluate) was used. By focusing the role of the second stage on the p-toluate degradation, improved overall COD and p-toluate removal capacities of 4.18 and 1.35 g-thCOD/L·day could be achieved together with a complete COD removal efficiency. In this situation, all the pollutants except p-toluate were completely degraded in the first stage while 38 and 62% of p-toluate originally present in the wastewater were consecutively degraded in the individual stages. The concomitant methane production rate in each stage was 0.91 and 0.35 L/L·day respectively, and the methane yield on p-toluate was determined to be 0.12 L/g-thCOD. Batch tests using the granules obtained from each stage revealed that the acidogenic microorganisms enriched in both stages had a universal ability to degrade all aromatic pollutants present in the PTA wastewater. Moreover, image analysis using scanning electron microscope and confocal laser scanning microscopy combined with fluorescence in situ hybridization technique elucidated that the distribution of acidogens and methanogens within the granule was varied in each stage, which influenced the mass transfer regime resulting in the different pollutant degradation rates during the batch tests.  相似文献   

7.
The bacterial community associated with a full scale autothermal thermophilic aerobic digester (ATAD) treating sludge, originating from domestic wastewater and destined for land spread, was analysed using a number of molecular approaches optimised specifically for this high temperature environment. 16S rDNA genes were amplified directly from sludge with universally conserved and Bacteria-specific rDNA gene primers and a clone library constructed that corresponded to the late thermophilic stage (t = 23 h) of the ATAD process. Sequence analyses revealed various 16S rDNA gene sequence types reflective of high bacterial community diversity. Members of the bacterial community included α- and β-Proteobacteria, Actinobacteria with High G + C content and Gram-Positive bacteria with a prevalence of the Firmicutes (Low G + C) division (class Clostridia and Bacillus). Most of the ATAD clones showed affiliation with bacterial species previously isolated or detected in other elevated temperature environments, at alkaline pH, or in cellulose rich environments. Several phylotypes associated with Fe(III)- and Mn(IV)-reducing anaerobes were also detected. The presence of anaerobes was of interest in such large scale systems where sub-optimal aeration and mixing is often the norm while the presence of large amounts of capnophiles suggest the possibility of limited convection and entrapment of CO2 within the sludge matrix during digestion. Comparative analysis with organism identified in other ATAD systems revealed significant differences based on optimised techniques. The abundance of thermophilic, alkalophilic and cellulose-degrading phylotypes suggests that these organisms are responsible for maintaining the elevated temperature at the later stages of the ATAD process.  相似文献   

8.
Concern is growing over contamination of the environment with pharmaceuticals because of their widespread use and incomplete removal during wastewater treatment, where microorganisms drive the key processes. The influence of pharmaceuticals on bacterial community structure in activated sludge was assessed in small-scale wastewater treatment bioreactors containing different concentrations (5, 50, 200 and 500 μg L−1) of several commonly used pharmaceuticals (ibuprofen, naproxen, ketoprofen, diclofenac and clofibric acid). T-RFLP analyses of the bacterial 16S rRNA genes indicated a minor but consistent shift in the bacterial community structure in the bioreactor R50 supplied with pharmaceuticals at a concentration of 50 μg L−1, compared to the control reactor R0, which was operated without addition of pharmaceuticals. In the reactors operated with higher concentrations of pharmaceuticals, a greater structural divergence was observed. Bacterial community composition was further investigated by preparation of two clone libraries of bacterial 16S rRNA genes from reactors R0 and R50. Most clones in both libraries belonged to the Betaproteobacteria, among which Thauera, Sphaerotilus, Ideonella and Acidovorax-related spp. dominated. Nitrite-oxidizing bacteria of the genus Nitrospira sp., which are key organisms for the second stage of nitrification in wastewater treatment plants, were found only in the clone library of the reactor without pharmaceuticals. In addition, diversity indices were calculated for the two clone libraries, indicating a reduced diversity of activated sludge bacterial community in the reactor supplied with 50 μg L−1 of each of selected pharmaceuticals.  相似文献   

9.
Electro-dewatering is an energy-efficient technology in which an electric field can increase the dryness of biosolids from secondary wastewater treatment from 15% w/w to 30-50% w/w. Here, we address bacterial pathogen indicators inactivation (total coliforms, Escherichia coli and aerobic endospores) during electro-dewatering, investigating the roles of electrochemically generated oxidants, extreme pH, and high temperature (from Joule heating). Our results demonstrate that temperature is the primary factor affecting total coliforms and E. coli inactivation. First, several electro-dewatering cycles were used to increase sludge temperature to about 100 °C after 6 min, during which time the average pH decreased from 7 to 3.6 after 10 min. Total coliforms and E. coli MPNs reached their detection limits after 6 min (with 4-5 logs of inactivation for total coliforms and 3-4 logs for E. coli). In contrast, aerobic endospores were not inactivated under these conditions; rather, their germination appeared to be stimulated by 6-8 min of electro-dewatering. Second, the dewatering cake was separated into four horizontal layers. After 8 min of electro-dewatering, the pH in the top layers decreased to 3, whereas the pH in the bottom layers increased to 8. Inactivation of total coliforms and E. coli in the sludge cake was similar in all layers, increasing with time, suggesting that oxidants and extreme pH are secondary inactivation factors. Finally, electrodes were cooled to maintain a temperature less than 34 °C. Although pH decreased significantly after 12 min of electro-dewatering, there was no significant bacterial pathogen indicator inactivation at low temperature.  相似文献   

10.
The total, ammonia-oxidizing, and denitrifying Bacteria in a full-scale membrane bioreactor (MBR) were evaluated monthly for over one year. Microbial communities were analyzed by denaturing gradient gel electrophoresis (DGGE) and clone library analysis of the 16S rRNA and ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ) genes. The community fingerprints obtained were compared to those from a conventional activated sludge (CAS) process running in parallel treating the same domestic wastewater. Distinct DGGE profiles for all three molecular markers were observed between the two treatment systems, indicating the selection of specific bacterial populations by the contrasting environmental and operational conditions. Comparative 16S rRNA sequencing indicated a diverse bacterial community in the MBR, with phylotypes from the α- and β-Proteobacteria and Bacteroidetes dominating the gene library. The vast majority of sequences retrieved were not closely related to classified organisms or displayed relatively low levels of similarity with any known 16S rRNA gene sequences and thus represent organisms that constitute new taxa. Similarly, the majority of the recovered nosZ sequences were novel and only moderately related to known denitrifiers from the α- and β-Proteobacteria. In contrast, analysis of the amoA gene showed a remarkably simple ammonia-oxidizing community with the detected members almost exclusively affiliated with the Nitrosomonas oligotropha lineage. Major shifts in total bacteria and denitrifying community were detected and these were associated with change in the external carbon added for denitrification enhancement. In spite of this, the MBR was able to maintain a stable process performance during that period. These results significantly expand our knowledge of the biodiversity and population dynamics of microorganisms in MBRs for wastewater treatment.  相似文献   

11.
To understand how to optimize performance of a partially nitrifying plant, the dynamics of Nitrospira and Nitrobacter abundance were studied over a 1 year period using quantitative polymerase chain reaction (qPCR) and their relative contributions to nitrite oxidation assessed including the affects of temperature and dissolved oxygen (DO). Correlation coefficients linking shifts in the community composition of nitrite-oxidizing bacteria (NOB) to operational or environmental variables indicated Nitrospira was significantly and negatively correlated to nitrite concentrations (r = −0.45, P < 0.01) and DO (r = −0.46, P < 0.01), while temperature showed a strong positive correlation (r = 0.59, P < 0.0001). However, the Nitrobacter portion of the total NOB populations showed a positive correlations with DO (r = 0.38, P < 0.01) and hydraulic retention time (HRT) (r = 0.33, P < 0.05), as well as being negatively correlated with temperature (r = −0.49, P < 0.001) suggesting specific niche adaptations within the NOB community. Nitrospira was dominant being better adapted to the low DO and shorter sludge retention times (SRT) of this plant, while Nitrobacter increased in abundance during the winter months, when temperatures were lower and DO concentrations higher. Principal component analysis (PCA) results supported these findings by the close proximity of Nitrospira and temperature biplots of PC1 and PC2 as well as grouping Nitrobacter, NO2-N, HRT, and DO in the loadings together. The clustering of samples from specific dates also exhibited a strong seasonality.  相似文献   

12.
Sludge reduction is one of the major challenges in biological wastewater treatment. One approach is to increase the sludge degradation yield together with the biodegradation kinetics. Among the various sludge pretreatment strategies proposed, thermal pretreatment at around 65 °C was described as promising. The enhancement in the biodegradation activity due to the selection of thermophilic hydrolytic bacteria was proposed, but further experiments are needed to demonstrate the specific role of these bacteria. In this study, concentrated activated sludge grown at 20 °C was subjected to thermal treatment at 65 °C for different periods. The originality of the work relied on a polyphasic approach based on the correlation between kinetics (chemical oxygen demand, COD; mixed liquor suspended solids, MLSS), bacterial activity (respirometry) and bacterial community structure (phylochip monitoring) in order to characterize the mechanisms involved in the thermal reduction of sludge. The bacterial activity in the aeration basin decreased to a very low level when recycling sludge was treated at 65 °C from 13 to 60 h, but then, started to increase after 60 h. In parallel to these fluctuations in activity, a drastic shift occurred in the bacterial community structure with the selection of thermophilic bacteria (mainly related to genera Paenibacillus and Bacillus), which are known for their specific hydrolases.  相似文献   

13.
The occurrence and spread of multi-drug resistant bacteria is a pressing public health problem. The emergence of bacterial resistance to antibiotics is common in areas where antibiotics are heavily used, and antibiotic-resistant bacteria also increasingly occur in aquatic environments. The purpose of the present study was to evaluate the impact of the wastewater treatment process on the prevalence of antibiotic resistance in Acinetobacter spp. in the wastewater and its receiving water. During two different events (high-temperature, high-flow, 31 °C; and low-temperature, low-flow, 8 °C), 366 strains of Acinetobacter spp. were isolated from five different sites, three in a wastewater treatment plant (raw influent, second effluent, and final effluent) and two in the receiving body (upstream and downstream of the treated wastewater discharge point). The antibiotic susceptibility phenotypes were determined by the disc-diffusion method for 8 antibiotics, amoxicillin/clavulanic acid (AMC), chloramphenicol (CHL), ciprofloxacin (CIP), colistin (CL), gentamicin (GM), rifampin (RA), sulfisoxazole (SU), and trimethoprim (TMP). The prevalence of antibiotic resistance in Acinetobacter isolates to AMC, CHL, RA, and multi-drug (three antibiotics or more) significantly increased (p < 0.01) from the raw influent samples (AMC, 8.7%; CHL, 25.2%; RA, 63.1%; multi-drug, 33.0%) to the final effluent samples (AMC, 37.9%; CHL, 69.0%; RA, 84.5%; multi-drug, 72.4%), and was significantly higher (p < 0.05) in the downstream samples (AMC, 25.8%; CHL, 48.4%; RA, 85.5%; multi-drug, 56.5%) than in the upstream samples (AMC, 9.5%; CHL, 27.0%; RA, 65.1%; multi-drug, 28.6%). These results suggest that wastewater treatment process contributes to the selective increase of antibiotic resistant bacteria and the occurrence of multi-drug resistant bacteria in aquatic environments.  相似文献   

14.
Kim YM  Chon DH  Kim HS  Park C 《Water research》2012,46(13):4292-4300
The goal of this study was to investigate the bacterial community in activated sludge with an anaerobic side-stream reactor (ASSR), a process permitting significant decrease in sludge production during wastewater treatment. The study operated five activated sludge systems with different sludge treatment schemes serving as various controls for the activated sludge with ASSR. Bacterial communities were analyzed by denaturing gradient gel electrophoresis (DGGE), sequencing and construction of phylogenetic relationships of the identified bacteria. The DGGE data showed that activated sludge incorporating ASSR contained higher diversity of bacteria, resulting from long solids retention time and recirculation of sludge under aerobic and anaerobic conditions. The similarity of DGGE profiles between ASSR and separate anaerobic digester (control) was high indicating that ASSR is primarily related to conventional anaerobic digesters. Nevertheless, there was also unique bacteria community appearing in ASSR. Interestingly, sludge in the main system and in ASSR showed considerably different bacterial composition indicating that ASSR allowed enriching its own bacterial community different than that from the aeration basin, although two reactors were connected via sludge recirculation. In activated sludge with ASSR, sequences represented by predominant DGGE bands were affiliated with Proteobacteria. The remaining groups were composed of Spirochaetes, Clostridiales, Chloroflexi, and Actinobacteria. Their putative role in the activated sludge with ASSR is also discussed in this study.  相似文献   

15.
This study is focused on the diversity of bacterial communities from two series of horizontal subsurface flow constructed wetlands (CW) polishing high salinity tannery wastewater. Each series was planted with Arundo donax or Sarcocornia sp. in a substrate composed by expanded clay and sand. Chemical and biochemical oxygen demand removal efficiencies were similar in each series, varying between 58 and 67% (inlet COD 218 ± 28 mg L−1) and 60 and 77% (inlet BOD5 37 ± 6 mg L−1), respectively. High numbers of culturable bacteria were obtained from substrate and root samples - 5.75 × 106-3.95 × 108 CFU g−1 recovered on marine agar and 1.72 × 107-8.46 × 108 CFU g−1 on nutrient agar. Fifty bacterial isolates were retrieved from the CW, related phylogenetically to Firmicutes, Actinobacteria, Bacteroidetes, α-, β-, and γ-Proteobacteria. Changes in the bacterial communities, from roots and substrate of each series, related to the plant species, hydraulic loading rates and along CW operation were examined using denaturating gradient gel electrophoresis (DGGE). The clustering analysis suggested that a diverse and distinct bacterial community inhabits each series, which was related to the type of plant present in each CW.  相似文献   

16.
Nutrient removal performances of sequencing batch reactors using granular sludge for intensified biological wastewater treatment rely on optimal underlying microbial selection. Trigger factors of bacterial selection and nutrient removal were investigated in these novel biofilm systems with specific emphasis on polyphosphate- (PAO) and glycogen-accumulating organisms (GAO) mainly affiliated with Accumulibacter and Competibacter, respectively. In a first dynamic reactor operated with stepwise changes in concentration and ratio of acetate and propionate (Ac/Pr) under anaerobic feeding and aerobic starvation conditions and without wasting sludge periodically, propionate favorably selected for Accumulibacter (35% relative abundance) and stable production of granular biomass. A Plackett-Burman multifactorial experimental design was then used to screen in eight runs of 50 days at stable sludge retention time of 15 days for the main effects of COD concentration, Ac/Pr ratio, COD/P ratio, pH, temperature, and redox conditions during starvation. At 95% confidence level, pH was mainly triggering direct Accumulibacter selection and nutrient removal. The overall PAO/GAO competition in granular sludge was statistically equally impacted by pH, temperature, and redox factors. High Accumulibacter abundances (30–47%), PAO/GAO ratios (2.8–8.4), and phosphorus removal (80–100%) were selected by slightly alkaline (pH > 7.3) and lower mesophilic (<20 °C) conditions, and under full aeration during fixed 2-h starvation. Nitrogen removal by nitrification and denitrification (84–97%) was positively correlated to pH and temperature. In addition to alkalinity, non-limited organic conditions, 3-carbon propionate substrate, sludge age control, and phase length adaptation under alternating aerobic-anoxic conditions during starvation can lead to efficient nutrient-removing granular sludge biofilm systems.  相似文献   

17.
Michael W. Falk 《Water research》2010,44(17):5109-5115
The effects of toxins at ambient concentrations on microbial activity and community dynamics are poorly understood. We operated 4 membrane bioreactors (MBRs) in parallel; two reactors were continuously exposed to the toxin 3-chloroaniline (3-CA) at environmentally relevant levels, representing 25% of the total chemical oxygen demand (COD; Total COD = 400 mg l−1 d−1), and two reactors received no 3-CA. During the 70 d exposure to 3-CA the microbial communities never adapted as evidenced by a 48% and 14% reduction in COD and ammonia removal, respectively, compared to over 92% reduction for both measurements in the controls. The bacterial 16S rRNA gene was monitored using terminal restriction fragment length polymorphism (T-RFLP) analysis (n = 15 temporal grab samples per reactor) over the 70 d period. T-RFLP spectra analysis compared the rapid species turnover rate (STR) approach with the more computationally intensive non-metric multi-dimensional scaling (NMS) complemented with multi-response permutation procedure (MRPP). The methods revealed comparable findings and the presence of 3-CA selected for a more convergent community with less bacterial turnover. In contrast, the control MBRs were more divergent as evidenced by greater bacterial turnover variability. The importance of studying replicate reactors is highlighted by the fact that one of the two controls was significantly different from the treatment MBRs (p-value = 0.01, α = 0.05) whereas the other one was not (p-value = 0.24, α = 0.05). The study suggests that analysis of community dynamics with the rapid STR approach and with NMS/MRPP can lead to comparable results when targeting the 16S rRNA gene. The use of replicate bioreactors is essential for meaningful interpretation of microbial community patterns.  相似文献   

18.
A pilot scale submerged ultra-filtration membrane bioreactor (MBR) was used for the aerobic treatment of domestic wastewater over 9 months of year 2006 (28th March to 21st December). The MBR was installed at a municipal wastewater facility (EMASAGRA, Granada, Spain) and was fed with real wastewater. The experimental work was divided in 4 stages run under different sets of operation conditions. Operation parameters (total and volatile suspended solids, dissolved oxygen concentration) and environmental variables (temperature, pH, COD and BOD5 of influent water) were daily monitored. In all the experiments conducted, the MBR generated an effluent of optimal quality complying with the requirements of the European Law (91/271/CEE 1991). A cultivation-independent approach (polymerase chain reaction-temperature gradient gel electrophoresis, PCR-TGGE) was used to analyze changes in the structure of the bacterial communities in the sludge. Cluster analysis of TGGE profiles demonstrated significant differences in community structure related to variations of the operation parameters and environmental factors. Canonical correspondence analysis (CCA) suggested that temperature, hydraulic retention time and concentration of volatile suspended solids were the factors mostly influencing community structure. 23 prominent TGGE bands were successfully reamplified and sequenced, allowing gaining insight into the identities of predominantly present bacterial populations in the sludge. Retrieved partial 16S-rRNA gene sequences were mostly related to the α-Proteobacteria, β-Proteobacteria and γ-Proteobacteria classes. The community established in the MBR in each of the four stages of operation significantly differed in species composition and the sludge generated displayed dissimilar rates of mineralization, but these differences did not influence the performance of the bioreactor (quality of the permeate). These data indicate that the flexibility of the bacterial community in the sludge and its ability to get adapted to environmental changes play an important role for the stable performance of MBRs.  相似文献   

19.
Ye L  Shao MF  Zhang T  Tong AH  Lok S 《Water research》2011,45(15):4390-4398
For full understanding of the microbial community in the wastewater treatment bioreactors, one of the feasible and effective ways is to investigate the massive genetic information contained in the activated sludge. In this study, high-throughput pyrosequencing was applied to analyze the 16S rRNA gene of bacteria in a laboratory-scale nitrification reactor and a full-scale wastewater treatment plant. In total, 27,458 and 26,906 effective sequence reads of the 16S rRNA gene were obtained from the Reactor and the wastewater treatment plant activated sludge samples respectively. The taxonomic complexities in the two samples were compared at phylum and genus levels. According to the pyrosequencing results, even for a laboratory-scale reactor as simple as that in this study, a small size clone library is far from enough to reflect the whole profile of the bacterial community. In addition, it was found that the commonly used informatics tool “RDP classifier” may drastically assign Nitrosomonas sequences into a wrong taxonomic unit resulting in underestimation of ammonia-oxidizing bacteria in the bioreactors. In this paper the reasons for this mistakenly assignment were analyzed and correction methods were proposed.  相似文献   

20.
P. Foladori  L. Bruni 《Water research》2010,44(13):3807-3818
A rapid multi-step procedure, potentially amenable to automation, was proposed for quantifying viable and active bacterial cells, estimating their biovolume using flow cytometry (FCM) and to calculate their biomass within the main stages of a wastewater treatment plant: raw wastewater, settled wastewater, activated sludge and effluent. Fluorescent staining of bacteria using SYBR-Green I + Propidium Iodide (to discriminate cell integrity or permeabilisation) and BCECF-AM (to identify enzymatic activity) was applied to count bacterial cells by FCM. A recently developed specific procedure was applied to convert Forward Angle Light Scatter measured by FCM into the corresponding bacterial biovolume. This conversion permits the calculation of the viable and active bacterial biomass in wastewater, activated sludge and effluent, expressed as Volatile Suspended Solids (VSS) or particulate Chemical Oxygen Demand (COD). Viable bacterial biomass represented only a small part of particulate COD in raw wastewater (4.8 ± 2.4%), settled wastewater (10.7 ± 3.1%), activated sludge (11.1 ± 2.1%) and effluent (3.2 ± 2.2%). Active bacterial biomass counted for a percentage of 30-47% of the viable bacterial biomass within the stages of the wastewater treatment plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号