首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two mineral-based materials (Polonite and Sorbulite) intended for filter wells in on-site wastewater treatment were compared in terms of removal of phosphate (PO4–P), total inorganic nitrogen (TIN), total organic carbon (TOC) and faecal indicator bacteria (Escherichia coli and Enterococci). Using an innovative, recirculating system, septic tank effluent was pumped at a hydraulic loading rate of 3000 L m2 d−1 into triplicate bench-scale columns of each material over a 90-day period. The results showed that Polonite performed better with respect to removal of PO4–P, retaining on average 80% compared with 75% in Sorbulite. This difference was attributed to higher CaO content in Polonite and its faster dissolution. Polonite also performed better in terms of removal of bacteria because of its higher pH value. The total average reduction in E. coli was 60% in Polonite and 45% in Sorbulite, while for Enterococci the corresponding value was 56% in Polonite and 34% in Sorbulite. Sorbulite removed TIN more effectively, with a removal rate of 23%, while Polonite removed 11% of TIN, as well as TOC. Organic matter (measured as TOC) was accumulated in the filter materials but was also released periodically. The results showed that Sorbulite could meet the demand in removing phosphate and nitrogen with reduced microbial release from the wastewater treatment process.  相似文献   

2.
We studied the phosphorus (P) binding capacity of Ca-rich alkaline filter material - hydrated oil shale ash (i.e. hydrated ash) in two onsite pilot-scale experiments (with subsurface flow filters) in Estonia: one using pre-treated municipal wastewater with total phosphorus (TP) concentration of 0.13-17.0 mg L−1 over a period of 6 months, another using pre-treated landfill leachate (median TP 3.4 mg L−1) for a total of 12 months. The results show efficient P removal (median removal of phosphates 99%) in horizontal flow (HF) filters at both sites regardless of variable concentrations of several inhibitors. The P removal efficiency of the hydrated ash increases with increasing P loading, suggesting direct precipitation of Ca-phosphate phases rather than an adsorption mechanism. Changes in the composition of the hydrated ash suggest a significant increase in P concentration in all filters (e.g. from 489.5 mg kg−1 in initial ash to 664.9 mg kg−1 in the HF filter after one year in operation), whereas almost all TP was removed from the inflow leachate (R2 = 0.99). Efficiency was high throughout the experiments (median outflow from HF hydrated ash filters 0.05-0.50 mg L−1), and P accumulation did not show any signs of saturation.  相似文献   

3.
This work proposes an efficient combined treatment for the decontamination of a pesticide-containing wastewater resulting from phytopharmaceutical plastic containers washing, presenting a moderate organic load (COD = 1662-1960 mg O2 L−1; DOC = 513-696 mg C L−1), with a high biodegradable organic carbon fraction (81%; BOD5 = 1350-1600 mg O2 L−1) and a remaining recalcitrant organic carbon mainly due to pesticides. Nineteen pesticides were quantified by LC-MS/MS at concentrations between 0.02 and 45 mg L−1 (14-19% of DOC). The decontamination strategy involved a sequential three-step treatment: (a) biological oxidation process, leading to almost complete removal of the biodegradable organic carbon fraction; (b) solar photo-Fenton process using CPCs, enhancing the bio-treated wastewater biodegradability, mainly due to pesticides degradation into low-molecular-weight carboxylate anions; (c) and a final polishing step to remove the residual biodegradable organic carbon, using a biological oxidation process. Treatment performance was evaluated in terms of mineralization degree (DOC), pesticides content (LC-MS/MS), inorganic ions and low-molecular-weight carboxylate anions (IC) concentrations. The estimated phototreatment energy necessary to reach a biodegradable wastewater, considering pesticides and low-molecular-weight carboxylate anions concentrations, Zahn-Wellens test and BOD5/COD ratio, was only 2.3 kJUV L−1 (45 min of photo-Fenton at a constant solar UV power of 30 W m−2), consuming 16 mM of H2O2, which pointed to 52% mineralization and an abatement higher than 86% for 18 pesticides. The biological oxidation/solar photo-Fenton/biological oxidation treatment system achieved pesticide removals below the respective detection limits and 79% mineralization, leading to a COD value lower than 150 mg O2 L−1, which is in agreement with Portuguese discharge limits regarding water bodies.  相似文献   

4.
Marina Arnaldos 《Water research》2010,44(18):5306-5315
Plants aiming to achieve very low effluent nutrient levels (<3 mg N/L for N, and <0.1 mg P/L for P) need to consider removal of effluent fractions hitherto not taken into account. Two of these fractions are dissolved organic nitrogen (DON) and dissolved non-reactive phosphorus (DNRP) (mainly composed of organic phosphorus). In this research, enhanced coagulation using alum (at doses commonly employed in tertiary phosphorus removal) followed by microfiltration (using 0.22 μm pore size filters) was investigated for simultaneous effluent DON and dissolved phosphorus (DP) fractions removal. At an approximate dose of 3.2 mg Al(III)/L, corresponding to 1.5 Al(III)/initial DON-N and 3.8 Al(III)/initial DP-P molar ratios, maximum simultaneous removal of DON and DP was achieved (69% for DON and 72% for DP). At this dose, residual DON and DP concentrations were found to be 0.3 mg N/L and 0.25 mg P/L, respectively. Analysis of the trends of removal revealed that the DNRP removal pattern was similar to that commonly reported for dissolved reactive phosphorus. Since this study involved intensive analytical work, a secondary objective was to develop a simple and accurate measurement protocol for determining dissolved N and P species at very low levels in wastewater effluents. The protocol developed in this study, involving simultaneous digestion for DON and DNRP species, was found to be very reliable and accurate based on the results.  相似文献   

5.
This work aimed to assess the technical and energetic feasibility of a passively aerated laboratory-scale trickling filter, configured as a two-stage system, to produce urban wastewater (UWW) reusable in agriculture. The trickling filter was fed continuously with high-strength UWW at four hydraulic retention times (HRTs), that is, 10, 5, 2 and 1 day, corresponding to organic loading rates (OLRs) of 0.1, 0.2, 0.5 and 0.9 kg COD/m3/d, respectively. The results revealed a good performance in organic load removal and nitrification at the four HRTs. The trickling filter showed high organic pollutant removal efficiencies of up to 93%, 94% and 98% for chemical oxygen demand (COD), BOD5 and total suspended solid (TSS), respectively, as well as high ammonia nitrogen removal above 96% at the shortest HRT of 1 day. All physicochemical parameters were significantly lower than the allowable limits set out in ISO 16075 for category C (non-food crop irrigation) irrigation water. The reuse of treated UWW in irrigation led to germination indexes and growth parameters of triticale (Triticosecale Wittm.) almost equal to those obtained using tap water. Energy use was found to be about 0.2754 kWh/m3 of treated wastewater, making it competitive with trickling filter plants reported in the literature. The simplicity and energy efficiency of the developed trickling filter system, combined with its capacity for almost full nitrification, make it appealing for sewage treatment in small communities in developing countries.  相似文献   

6.
The effect of ozonation on the biodegradability of 100-ppm aqueous solutions of 2,4-dichlorophenol has been investigated. BOD at 5, 10 and 21 days, BOD/COD and BOD/TOC ratios and the average oxidation state are presented. Biodegradability measured as BOD5/COD ratio was increased from 0 of the original solution to 0.25 at the moment of removing all the initial compound (corresponding to an ozone dose of 0.12 g L−1, 0.48 for BOD21/COD ratio). To test the effect of this pre-treatment, the biological oxidation of these pre-ozonated solutions was performed in two semi-continuous stirred tank reactors, one with non-acclimated sludge and one with acclimated-to-phenol sludge. The study showed that the TOC content of the pre-treated solution could be removed up to 68% by an aerobic biological treatment as well as co-digested with municipal wastewater (TOC removal up to 82%), with similar operating retention times to a municipal wastewater plant (12-24 h). Kinetic studies based on Monod model have also been carried out. Pseudo-first-order kinetic constants were found to be in the range of 0.5-0.8 L g TVSS−1 h−1.  相似文献   

7.
This study is focused on the diversity of bacterial communities from two series of horizontal subsurface flow constructed wetlands (CW) polishing high salinity tannery wastewater. Each series was planted with Arundo donax or Sarcocornia sp. in a substrate composed by expanded clay and sand. Chemical and biochemical oxygen demand removal efficiencies were similar in each series, varying between 58 and 67% (inlet COD 218 ± 28 mg L−1) and 60 and 77% (inlet BOD5 37 ± 6 mg L−1), respectively. High numbers of culturable bacteria were obtained from substrate and root samples - 5.75 × 106-3.95 × 108 CFU g−1 recovered on marine agar and 1.72 × 107-8.46 × 108 CFU g−1 on nutrient agar. Fifty bacterial isolates were retrieved from the CW, related phylogenetically to Firmicutes, Actinobacteria, Bacteroidetes, α-, β-, and γ-Proteobacteria. Changes in the bacterial communities, from roots and substrate of each series, related to the plant species, hydraulic loading rates and along CW operation were examined using denaturating gradient gel electrophoresis (DGGE). The clustering analysis suggested that a diverse and distinct bacterial community inhabits each series, which was related to the type of plant present in each CW.  相似文献   

8.
This study focuses on the removal of 32 selected micropollutants (pharmaceuticals, corrosion inhibitors and biocides/pesticides) found in an effluent coming from a municipal wastewater treatment plant (MWTP) based on activated sludge. Dissolved organic matter was present, with an initial total organic carbon of 15.9 mg L−1, and a real global quantity of micropollutants of 29.5 μg L−1. The treatments tested on the micropollutants removal were: UV-light emitting at 254 nm (UV254) alone, dark Fenton (Fe2+,3+/H2O2) and photo-Fenton (Fe2+,3+/H2O2/light). Different irradiation sources were used for the photo-Fenton experiences: UV254 and simulated sunlight. Iron and H2O2 concentrations were also changed in photo-Fenton experiences in order to evaluate its influence on the degradation. All the experiments were developed at natural pH, near neutral. Photo-Fenton treatments employing UV254, 50 mg L−1 of H2O2, with and without adding iron (5 mg L−1 of Fe2+ added or 1.48 mg L−1 of total iron already present) gave the best results. Global percentages of micropollutants removal achieved were 98 and a 97% respectively, after 30 min of treatments. As the H2O2 concentration increased (10, 25 and 50 mg L−1), best degradations were observed. UV254, Fenton, and photo-Fenton under simulated sunlight gave less promising results with lower percentages of removal.The highlight of this paper is to point out the possibility of the micropollutants degradation in spite the presence of DOM in much higher concentrations.  相似文献   

9.
Soil aquifer treatment of artificial wastewater under saturated conditions   总被引:2,自引:0,他引:2  
A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen and phosphate, using high strength artificial wastewater. The removal rates were determined under a combination of constant hydraulic loading rates (HLR) and variable COD concentrations as well as variable HLR under a constant COD. Within the range of COD concentrations considered (42 mg L−1-135 mg L−1) it was found that at fixed hydraulic loading rate, a decrease in the influent concentrations of dissolved organic carbon (DOC), biochemical oxygen demand (BOD), total nitrogen and phosphate improved their removal efficiencies. At the high COD concentrations applied residence times influenced the redox conditions in the soil column. Long residence times were detrimental to the removal process for COD, BOD and DOC as anoxic processes and sulphate reduction played an important role as electron acceptors. It was found that total COD mass loading within the range of 911 mg d−1-1780 mg d−1 applied as low COD wastewater infiltrated coupled with short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. The opposite was true for organic nitrogen where relatively high concentrations coupled with long residence time gave better removal efficiency.  相似文献   

10.
The 5-day biochemical oxygen demand (BOD5) and carbonaceous BOD5 (CBOD5) tests are widely used parameters for monitoring wastewater. Total organic carbon (TOC) has many advantages over these tests. Wastewater utilities have conducted studies to modify National Pollutant Discharge Elimination System (NPDES) permits to allow TOC analysis; however, statistical methods vary across studies. This study examined parametric and nonparametric correlation and parametric, nonparametric, and nonlinear regression methods for analysing BOD5, CBOD5, and TOC concentrations collected for 1 year from seven wastewater treatment plants from the Metropolitan Water Reclamation District of Greater Chicago. Spearman ρ correlation and Theil–Sen regression on log-transformed concentrations were the most appropriate methods. Correlation coefficients were 0.83 or greater and regression residuals were as small as or smaller than the other two methods. This study demonstrated that nonparametric methods performed best for analysing non-normal data in seeking to incorporate TOC analysis into NPDES reporting.  相似文献   

11.
This work investigated the application of a solar driven advanced oxidation process (solar photo-Fenton), for the degradation of antibiotics at low concentration level (μg L−1) in secondary treated domestic effluents at a pilot-scale. The examined antibiotics were ofloxacin (OFX) and trimethoprim (TMP). A compound parabolic collector (CPC) pilot plant was used for the photocatalytic experiments. The process was mainly evaluated by a fast and reliable analytical method based on a UPLC-MS/MS system. Solar photo-Fenton process using low iron and hydrogen peroxide doses ([Fe2+]0 = 5 mg L−1; [H2O2]0 = 75 mg L−1) was proved to be an efficient method for the elimination of these compounds with relatively high degradation rates. The photocatalytic degradation of OFX and TMP with the solar photo-Fenton process followed apparent first-order kinetics. A modification of the first-order kinetic expression was proposed and has been successfully used to explain the degradation kinetics of the compounds during the solar photo-Fenton treatment. The results demonstrated the capacity of the applied advanced process to reduce the initial wastewater toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba) and the water flea Daphnia magna. The phytotoxicity of the treated samples, expressed as root growth inhibition, was higher compared to that observed on the inhibition of seed germination. Enterococci, including those resistant to OFX and TMP, were completely eliminated at the end of the treatment. The total cost of the full scale unit for the treatment of 150 m3 day−1 of secondary wastewater effluent was found to be 0.85 € m−3.  相似文献   

12.
This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes (13C and 14C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4–14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88–98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39–65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29–50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4–6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions.  相似文献   

13.
The application of sonolysis (US) for remediation of wastewater is an area of increasing interest. The aim of this study was to evaluate the ultrasonic (US) process on the degradation of pharmaceuticals (diclofenac (DCF), amoxicillin (AMX), carbamazepine (CBZ)) in single solutions and also in three mixtures spiked in urban wastewater effluent. Several operating conditions, such as power density (25-100 W L−1), initial substrate concentrations (2.5-10 mg L−1), initial solution pH (3-11), and air sparging were varied for the evaluation and understanding of the process. The degradation (as assessed by measuring UV absorbance), the generation of hydroxyl radicals (as assessed measuring H2O2 concentration), the mineralization (in terms of TOC and COD removal), and the aerobic biodegradability (as assessed by the BOD5/COD ratio) were monitored during sonication. Ecotoxicity to Daphnia magna, Pseudokirchneriella subcapitata and Lepidium sativum before and after treatment was also evaluated. It was found that the pharmaceuticals conversion is enhanced at increased applied power densities, acidic conditions and in the presence of dissolved air. The reaction rate increases with increasing initial concentration of single pharmaceuticals but it remains constant in the mixtures, indicating different kinetic regimes (i.e. first and zero order respectively). Mineralization is a slow process as reaction by-products are more stable than pharmaceuticals to total oxidation; nonetheless, they are also more readily biodegradable. The toxicity of the wastewater samples before and after contamination with pharmaceuticals both in mixtures and in single substance-containing solutions was observed more severely on P. subcapitata; a fact that raises concerns in regards to the discharge of such effluents. D. magna displayed less sensitivity compared to P. subcapitata because it belongs in a lower taxonomic species than D. magna. The germination index of L. sativum in the presence of the drugs' mixture was stimulated instead of inducing any toxicity effect and this might be attributed to the fact the sample, laden with very low drug concentrations was able to act as a provider of additional nutrient elements.  相似文献   

14.
Constructed wetlands with horizontal sub-surface flow (HF CWs) have successfully been used for treatment various types of wastewater for more than four decades. Most systems have been designed to treat municipal sewage but the use for wastewaters from agriculture, industry and landfill leachate in HF CWs is getting more attention nowadays. The paper summarizes the results from more than 400 HF CWs from 36 countries around the world. The survey revealed that the highest removal efficiencies for BOD5 and COD were achieved in systems treating municipal wastewater while the lowest efficiency was recorded for landfill leachate. The survey also revealed that HF CWs are successfully used for both secondary and tertiary treatment. The highest average inflow concentrations of BOD5 (652 mg l− 1) and COD (1865 mg l− 1) were recorded for industrial wastewaters followed by wastewaters from agriculture for BOD5 (464 mg l− 1) and landfill leachate for COD (933 mg l− 1). Hydraulic loading data reveal that the highest loaded systems are those treating wastewaters from agriculture and tertiary municipal wastewaters (average hydraulic loading rate 24.3 cm d− 1). On the other hand, landfill leachate systems in the survey were loaded with average only 2.7 cm d− 1. For both BOD5 and COD, the highest average loadings were recorded for agricultural wastewaters (541 and 1239 kg ha− 1 d− 1, respectively) followed by industrial wastewaters (365 and 1212 kg ha− 1 d− 1, respectively). The regression equations for BOD5 and COD inflow/outflow concentrations yielded very loose relationships. Much stronger relationships were found for inflow/outflow loadings and especially for COD. The influence of vegetation on removal of organics in HF CWs is not unanimously agreed but most studies indicated the positive effect of macrophytes.  相似文献   

15.
Simultaneous removal of carbon and nutrients (CNP) in a single bioreactor is highly significant for energy consumption and control of reactor volume. Basically, nutrients removal is dependant to the ratio of biochemical oxygen demand to chemical oxygen demand (BOD5/COD). Thus, in this study the treatment of an industrial estate wastewater with low BOD5/COD ratio in an up-flow aerobic/anoxic sludge bed (UAASB) bioreactor, with an intermittent regime in aeration and discharge, was investigated. Hydraulic retention time (HRT) of 12-36 h and aeration time of 40-60 min/h were selected as the operating variables to analyze, optimize and model the process. In order to analyze the process, 13 dependent parameters as the process responses were studied. From the results, it was found, increasing HRT decreases the CNP removal efficiencies. However, by increasing the BOD5 fraction of the feed, the total COD (TCOD), slowly biodegradable COD (sbCOD), readily biodegradable COD (rbCOD), total nitrogen (TN), and total phosphorus (TP) removal efficiencies were remarkably increased. Population of heterotrophic, nitrifying and denitrifying bacteria showed good agreement with the results obtained for TCOD and TN removal. The optimum conditions were determined as 12-15 h and 40-60 min/h for HRT and aeration time respectively.  相似文献   

16.
Bijan L  Mohseni M 《Water research》2005,39(16):3763-3772
The overall effectiveness of integrating ozonation with biological treatment on the biodegradability enhancement and recalcitrant organic matter (ROM) removal from pulp mill alkaline bleach plant effluent was investigated. Ozonation was performed in a semi-batch bubble column reactor at pH of 11 and 4.5. Batch biological treatment was conducted in shake flasks. Samples obtained during the treatments were monitored for BOD5, COD, TOC, and molecular weight distribution. At an ozone dosage of 0.7-0.8 mg O3/mL wastewater, integrated treatment showed about 30% higher TOC mineralization compared to individual ozonation or biotreatment. Ozone treatment enhanced the biodegradability of the effluent (monitored as 21% COD reduction and 13% BOD5 enhancement), allowing for a higher removal of pollutants. The conversion of high molecular weight (HMW) to low molecular weight (LMW) compounds was an important factor in the overall biodegradability enhancement of the alkaline effluent. The overall biodegradability of the LMW compounds did not change over the course of ozonation, but it increased from 5% to 50% (measured as COD removal) for the HMW portion. Ozonation at pH of 11 was more effective than that at pH of 4.5 in terms of generating more biodegradable compounds.  相似文献   

17.
Stabilized landfill leachate has previously been treated with activated carbon (AC); however, information on the selectivity of AC depending upon the pore size is minimal. Isotherm and kinetic experiments were conducted using three commercially available AC products, one micro-porous and two meso-porous. Equilibrium adsorption and intra-particle diffusion of organic matter from stabilized leachate was studied. Isotherm experimental data were fitted to Langmuir, Freundlich, and Redlich-Peterson isotherm models in non-linear forms. Of the three isotherm models, the Redlich-Peterson model provided the best fit to the experimental data and showed a similar organic matter adsorption capacity (approximately 0.2 g total organic carbon (TOC) g−1 AC) for both micro-porous and meso-porous AC. The organic matter effective intra-particle diffusion coefficients (De) in both AC types were on the order of 10−10 m2 s−1 for AC particle sizes greater than 0.5 mm. Meso-porous ACs showed slightly higher De compared to micro-porous AC. Rapid small-scale tests showed a maximum of 80% TOC removal from leachate by each AC investigated. Fluorescence spectroscopy showed a preferential adsorption of fulvic-type organic matter with an increase in empty bed contact time by each AC.  相似文献   

18.
Degradation of the emerging contaminant ibuprofen in water by photo-Fenton   总被引:3,自引:0,他引:3  
In this study the degradation of the worldwide Non-Steroidal Anti-Inflammatory Drug (NSAID) ibuprofen (IBP) by photo-Fenton reaction by use of solar artificial irradiation was carried out. Non-photocatalytic experiments (complex formation, photolysis and UV/Vis-H2O2 oxidation) were executed to evaluate the isolated effects and additional differentiated degradation pathways of IBP. The solar photolysis cleavage of H2O2 generates hydroxylated-IBP byproducts without mineralization. Fenton reaction, however promotes hydroxylation with a 10% contamination in form of a mineralization. In contrast photo-Fenton in addition promotes the decarboxylation of IBP and its total depletion is observed. In absence of H2O2 a decrease of IBP was observed in the Fe(II)/UV-Vis process due to the complex formation between iron and the IBP-carboxylic moiety. The degradation pathway can be described as an interconnected and successive principal decarboxylation and hydroxylation steps. TOC depletion of 40% was observed in photo-Fenton degradation. The iron-IBP binding was the key-point of the decarboxylation pathway. Both decarboxylation and hydroxylation mechanisms, as individual or parallel process are responsible for IBP removal in Fenton and photo-Fenton systems. An increase in the biodegradability of the final effluent after photo-Fenton treatment was observed. Final BOD5 of 25 mg L−1 was reached in contrast to the initial BOD5 shown by the untreated IBP solution (BOD5 < 1 mg L−1). The increase in the biodegradability of the photo-Fenton degradation byproducts opens the possibility for a complete remediation with a final post-biological treatment.  相似文献   

19.
Wastewater from cork processing industry present high levels of organic and phenolic compounds, such as tannins, with a low biodegradability and a significant toxicity. These compounds are not readily removed by conventional municipal wastewater treatment, which is largely based on primary sedimentation followed by biological treatment. The purpose of this work is to study the biodegradability of different cork wastewater fractions, obtained through membrane separation, in order to assess its potential for biological treatment and having in view its valorisation through tannins recovery, which could be applied in other industries. Various ultrafiltration and nanofiltration membranes where used, with molecular weight cut-offs (MWCO) ranging from 0.125 to 91 kDa. The wastewater and the different permeated fractions were analyzed in terms of Total Organic Carbon (TOC), Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Phenols (TP), Tannins, Color, pH and Conductivity. Results for the wastewater shown that it is characterized by a high organic content (670.5-1056.8 mg TOC/L, 2285-2604 mg COD/L, 1000-1225 mg BOD/L), a relatively low biodegradability (0.35-0.38 for BOD5/COD and 0.44-0.47 for BOD20/COD) and a high content of phenols (360-410 mg tannic acid/L) and tannins (250-270 mg tannic acid/L). The results for the wastewater fractions shown a general decrease on the pollutant content of permeates, and an increase of its biodegradability, with the decrease of the membrane MWCO applied. Particularly, the permeated fraction from the membrane MWCO of 3.8 kDa, presented a favourable index of biodegradability (0.8) and a minimized phenols toxicity that enables it to undergo a biological treatment and so, to be treated in a municipal wastewater treatment plant. Also, within the perspective of valorisation, the rejected fraction obtained through this membrane MWCO may have a significant potential for tannins recovery. Permeated fractions from membranes with MWCO lower than 3.8 kDa, presented a particularly significant decline of organic matter and phenols, enabling this permeates to be reused in the cork processing and so, representing an interesting perspective of zero discharge for the cork industry, with evident environmental and economic advantages.  相似文献   

20.
Halophyte filter beds for treatment of saline wastewater from aquaculture   总被引:1,自引:0,他引:1  
The expansion of aquaculture and the recent development of more intensive land-based marine farms require efficient and cost-effective systems for treatment of highly nutrient-rich saline wastewater. Constructed wetlands with halophytic plants offer the potential for waste-stream treatment combined with production of valuable secondary plant crops. Pilot wetland filter beds, constructed in triplicate and planted with the saltmarsh plant Salicornia europaea, were evaluated over 88 days under commercial operating conditions on a marine fish and shrimp farm. Nitrogen waste was primarily in the form of dissolved inorganic nitrogen (TDIN) and was removed by 98.2 ± 2.2% under ambient loadings of 109-383 μmol l−1. There was a linear relationship between TDIN uptake and loading over the range of inputs tested. At peak loadings of up to 8185 ± 590 μmol l−1 (equivalent to 600 mmol N m−2 d−1), the filter beds removed between 30 and 58% (250 mmol N m−2 d−1) of influent TDIN. Influent dissolved inorganic phosphorus levels ranged from 34 to 90 μmol l−1, with 36-89% reduction under routine operations. Dissolved organic nitrogen (DON) loadings were lower (11-144 μmol l−1), and between 23 and 69% of influent DON was removed during routine operation, with no significant removal of DON under high TDIN loading. Over the 88-day study, cumulative nitrogen removal was 1.28 mol m−2, of which 1.09 mol m−2 was retained in plant tissue, with plant uptake ranging from 2.4 to 27.0 mmol N g−1 dry weight d−1. The results demonstrate the effectiveness of N and P removal from wastewater from land-based intensive marine aquaculture farms by constructed wetlands planted with S. europaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号