首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study is the first to report a quantitative microbial risk assessment (QMRA) on pathogens detected in stormwater discharges-of-concern, rather than relying on pathogen measurements in receiving waters. The pathogen concentrations include seven “Reference Pathogens” identified by the U.S. EPA: Cryptosporidium, Giardia, Salmonella, Norovirus, Rotavirus, Enterovirus, and Adenovirus. Data were collected from 12 sites representative of seven discharge types (including residential, commercial/industrial runoff, agricultural runoff, combined sewer overflows, and forested land), mainly during wet weather conditions during which times human health risks can be substantially elevated. The risks calculated herein therefore generally apply to short-term conditions (during and just after rainfall events) and so the results can be used by water managers to potentially inform the public, even for waters that comply with current criteria (based as they are on a 30-day mean risk). Using an example waterbody and mixed source, pathogen concentrations were used in QMRA models to generate risk profiles for primary and secondary water contact (or inhalation) by adults and children. A number of critical assumptions and considerations around the QMRA analysis are highlighted, particularly the harmonization of the pathogen concentrations measured in discharges during this project with those measured (using different methods) during the published dose–response clinical trials. Norovirus was the most dominant predicted health risk, though further research on its dose–response for illness (cf. infection) is needed. Even if the example mixed-source concentrations of pathogens had been reduced 30 times (by inactivation and mixing), the predicted swimming-associated illness rates – largely driven by Norovirus infections – can still be appreciable. Rotavirus generally induced the second-highest incidence of risk among the tested pathogens while risks for the other Reference Pathogens (Giardia, Cryptosporidium, Adenovirus, Enterovirus and Salmonella) were considerably lower. Secondary contact or inhalation resulted in considerable reductions in risk compared to primary contact. Measurements of Norovirus and careful incorporation of its concentrations into risk models (harmonization) should be a critical consideration for future QMRA efforts. The discharge-based QMRA approach presented herein is particularly relevant to cases where pathogens cannot be reliably detected in receiving waters with detection limits relevant to human health effects.  相似文献   

2.
Epidemiology studies of recreational waters have demonstrated that swimmers exposed to faecally-contaminated recreational waters are at risk of excess gastrointestinal illness. Epidemiology studies provide valuable information on the nature and extent of health effects, the magnitude of risks, and how these risks are modified or associated with levels of faecal contamination and other measures of pollution. However, such studies have not provided information about the specific microbial agents that are responsible for the observed illnesses in swimmers. The objective of this work was to understand more fully the reported epidemiologic results from studies conducted on the Great Lakes in the US during 2003 and 2004 by identifying pathogens that could have caused the observed illnesses in those studies. We used a Quantitative Microbial Risk Assessment (QMRA) approach to estimate the likelihood of pathogen-induced adverse health effects. The reference pathogens used for this analysis were Norovirus, rotavirus, adenovirus, Cryptosporidium spp., Giardia lamblia, Campylobacter jejuni, Salmonella enterica, and Escherichia coli O157:H7. Two QMRA-based approaches were used to estimate the pathogen combinations that would be consistent with observed illness rates: in the first, swimming-associated gastrointestinal (GI) illnesses were assumed to occur in the same proportion as known illnesses in the US due to all non-foodborne sources, and in the second, pathogens were assumed to occur in the recreational waters in the same proportion as they occur in disinfected secondary effluent. The results indicate that human enteric viruses and in particular, Norovirus could have caused the vast majority of the observed swimming-associated GI illnesses during the 2003/2004 water epidemiology studies. Evaluation of the time-to-onset of illness strongly supports the principal finding and sensitivity analyses support the overall trends of the analyses even given their substantial uncertainties.  相似文献   

3.
《Urban Water Journal》2013,10(6):461-466
A quantitative microbial risk assessment (QMRA) was undertaken to determine the potential human health risks associated with use of untreated groundwater from a superficial aquifer in a new residential urban development. In situ pathogen survival experiments determined the attenuation rates of selected pathogens. Cryptosporidium oocysts, Giardia cysts, E. coli, Campylobacter jejuni, and MS2 bacteriophage had 1 log10 (90%) reduction times (T90) ranging from 2 to 42 days. Adenovirus displayed distinctly non-linear broken stick decay rates with an initial T90 of 5 days to day 14, after which the T90 declined to ~100 days. The QMRA suggested that aquifer attachment was the dominant form of pathogen removal followed by natural attenuation. The QMRA results showed that under the exposure scenarios tested the mean human health risks were all acceptable with calculated Disability Adjusted Life Years (DALYs < 1 × 10? 6/person/year).  相似文献   

4.
This work was conducted to determine whether estimated risks following exposure to recreational waters impacted by gull, chicken, pig, or cattle faecal contamination are substantially different than those associated with waters impacted by human sources such as treated wastewater. Previously published Quantitative Microbial Risk Assessment (QMRA) methods were employed and extended to meet these objectives. Health outcomes used in the analyses were infection from reference waterborne pathogens via ingestion during recreation and subsequent gastrointestinal (GI) illness. Illness risks from these pathogens were calculated for exposure to faecally contaminated recreational water at the U.S. regulatory limits of 35 cfu 100 mL−1 enterococci and 126 cfu 100 mL−1Escherichia coli. The probabilities of GI illness were calculated using pathogen dose-response relationships from the literature and Monte Carlo simulations. Three scenarios were simulated, representing a range of feasible interpretations of the available data. The primary findings are that: 1) GI illness risks associated with exposure to recreational waters impacted by fresh cattle faeces may not be substantially different from waters impacted by human sources; and 2) the risks associated with exposure to recreational waters impacted by fresh gull, chicken, or pig faeces appear substantially lower than waters impacted by human sources. These results suggest that careful consideration may be needed in the future for the management of recreational waters not impacted by human sources.  相似文献   

5.
Faecal contamination of greywater and associated microbial risks   总被引:1,自引:0,他引:1  
The faecal contamination of greywater in a local treatment system at Viby?sen, north of Stockholm, Sweden was quantified using faecal indicator bacteria and chemical biomarkers. Bacterial indicator densities overestimated the faecal load by 100-1000-fold when compared to chemical biomarkers. Based on measured levels of coprostanol, the faecal load was estimated to be 0.04 g person(-1) day(-1). Prevalence of pathogens in the population and the faecal load were used to form the basis of a screening-level quantitative microbial risk assessment (QMRA) that was undertaken for rotavirus, Salmonella typhimurium, Campylobacter jejuni, Giardia lamblia and Cryptosporidium parvum. The different exposure scenarios simulated--direct contact, irrigation of sport fields and groundwater recharge--gave unacceptably high rotavirus risks (0.04 < Pinf < 0.60) despite a low faecal load. The poor reduction of somatic coliphages, which were used as a virus model, in the treatment was one main reason and additional treatment of the greywater is suggested. Somatic coliphages can under extreme circumstances replicate in the wastewater treatment system and thereby underestimate the virus reduction. An alternative QMRA method based on faecal enterococci densities estimated similar risks as for rotavirus. Growth conditions for Salmonella in greywater sediments were also investigated and risk modelling based on replication in the system increased the probability of infection from Salmonella 1000-fold, but it was still lower than the risk of a rotavirus infection.  相似文献   

6.
Molecular quantitative analysis of human viruses in California stormwater   总被引:1,自引:0,他引:1  
Many human pathogenic viruses are transmitted via the oral-fecal route and water is one possible vector, representing a risk for public health. Sixty-one large-volume water samples from storm drains in California were processed by a two-step hollow fiber ultrafiltration procedure followed by molecular analysis for human enterovirus and adenovirus types. Each sample was spiked with a surrogate, the benign bacteriophage PP7. Both surrogate and human viruses were quantified by newly designed TaqMan PCR assays. Equations were developed that account for the main variables in the procedure: recovery of the ultrafiltration, efficiency of nucleic acid extraction, and effect of inhibitors on the amplification of viral targets. Adenovirus 40/41 was detected in one sample at 230 genomes per liter, and no other adenovirus or enterovirus types were found. Samples that resulted in nondetects are reported together with the corresponding sample-specific limit of detection (S(LOD)), a useful tool when estimating the public health risk associated with the contact or ingestion of water. Virus concentrations did not correlate with traditional viable indicator concentrations or any of the physicochemical parameters measured. In contrast, coliform concentrations were correlated with total suspended solids. To our knowledge, this is the first study where all factors known to influence limits of detection have been investigated and integrated into equations that are widely applicable to the quantification of viruses or other microbial targets by PCR.  相似文献   

7.
We investigated the viral contamination of tap water at 11 urban sites in Korea between 1997 and 1998 over a period of 11 months. A total of 23 tap water samples were examined for infectious enteroviruses and adenoviruses by a cell culture technique followed by polymerase chain reaction (PCR) amplification. To identify the recovered viruses, sequence analysis of PCR products was performed. Infectious enteroviruses and adenoviruses were detected in 11 (47.8%) and 9 (39.1%) of the samples, respectively. Both enteroviruses and adenoviruses were detected in five samples (21.7%). The level of viral contamination was quite high, ranging from 2 x 10(-3) to 2.9 x 10(-2) Most Probable Number of Infectious Unit L(-1), far above the recommended virus level in drinking water set by the US EPA. Poliovirus type I derived from vaccine was frequently detected and the remainder comprised coxsackievirus B type or echovirus type 6, which were causative agents of aseptic meningitis in Korea in 1997 and 1998, respectively. Several types of adenovirus were detected in tap water samples and some water samples were found to contain adenoviruses which were closely related to enteric adenovirus types 40 and 41.  相似文献   

8.
Cryptosporidium species are protozoan parasites associated with gastro-intestinal illness. Following a number of high profile outbreaks worldwide, it has emerged as a parasite of major public health concern. A quantitative Monte Carlo simulation model was developed to evaluate the annual risk of infection from Cryptosporidium in tap water in Ireland. The assessment considers the potential initial contamination levels in raw water, oocyst removal and decontamination events following various process stages, including coagulation/flocculation, sedimentation, filtration and disinfection. A number of scenarios were analysed to represent potential risks from public water supplies, group water schemes and private wells. Where surface water is used additional physical and chemical water treatment is important in terms of reducing the risk to consumers. The simulated annual risk of illness for immunocompetent individuals was below 1 × 10− 4 per year (as set by the US EPA) except under extreme contamination events. The risk for immunocompromised individuals was 2-3 orders of magnitude greater for the scenarios analysed. The model indicates a reduced risk of infection from tap water that has undergone microfiltration, as this treatment is more robust in the event of high contamination loads. The sensitivity analysis highlighted the importance of watershed protection and the importance of adequate coagulation/flocculation in conventional treatment. The frequency of failure of the treatment process is the most important parameter influencing human risk in conventional treatment. The model developed in this study may be useful for local authorities, government agencies and other stakeholders to evaluate the likely risk of infection given some basic input data on source water and treatment processes used.  相似文献   

9.
Exposure to human pathogenic viruses in recreational waters has been shown to cause disease outbreaks. In the context of Article 14 of the revised European Bathing Waters Directive 2006/7/EC (rBWD, CEU, 2006) a Europe-wide surveillance study was carried out to determine the frequency of occurrence of two human enteric viruses in recreational waters. Adenoviruses were selected based on their near-universal shedding and environmental survival, and noroviruses (NoV) selected as being the most prevalent gastroenteritis agent worldwide. Concentration of marine and freshwater samples was done by adsorption/elution followed by molecular detection by (RT)-PCR. Out of 1410 samples, 553 (39.2%) were positive for one or more of the target viruses. Adenoviruses, detected in 36.4% of samples, were more prevalent than noroviruses (9.4%), with 3.5% GI and 6.2% GII, some samples being positive for both GI and GII. Of 513 human adenovirus-positive samples, 63 (12.3%) were also norovirus-positive, whereas 69 (7.7%) norovirus-positive samples were adenovirus-negative. More freshwater samples than marine water samples were virus-positive. Out of a small selection of samples tested for adenovirus infectivity, approximately one-quarter were positive. Sixty percent of 132 nested-PCR adenovirus-positive samples analysed by quantitative PCR gave a mean value of over 3000 genome copies per L of water. The simultaneous detection of infectious adenovirus and of adenovirus and NoV by (RT)PCR suggests that the presence of infectious viruses in recreational waters may constitute a public health risk upon exposure. These studies support the case for considering adenoviruses as an indicator of bathing water quality.  相似文献   

10.

Background

Traditional fecal indicator bacteria (FIB) measurement is too slow (>18 h) for timely swimmer warnings.

Objectives

Assess relationship of rapid indicator methods (qPCR) to illness at a marine beach impacted by urban runoff.

Methods

We measured baseline and two-week health in 9525 individuals visiting Doheny Beach 2007-08. Illness rates were compared (swimmers vs. non-swimmers). FIB measured by traditional (Enterococcus spp. by EPA Method 1600 or Enterolert™, fecal coliforms, total coliforms) and three rapid qPCR assays for Enterococcus spp. (Taqman, Scorpion-1, Scorpion-2) were compared to health. Primary bacterial source was a creek flowing untreated into ocean; the creek did not reach the ocean when a sand berm formed. This provided a natural experiment for examining FIB-health relationships under varying conditions.

Results

We observed significant increases in diarrhea (OR 1.90, 95% CI 1.29-2.80 for swallowing water) and other outcomes in swimmers compared to non-swimmers. Exposure (body immersion, head immersion, swallowed water) was associated with increasing risk of gastrointestinal illness (GI). Daily GI incidence patterns were different: swimmers (2-day peak) and non-swimmers (no peak). With berm-open, we observed associations between GI and traditional and rapid methods for Enterococcus; fewer associations occurred when berm status was not considered.

Conclusions

We found increased risk of GI at this urban runoff beach. When FIB source flowed freely (berm-open), several traditional and rapid indicators were related to illness. When FIB source was weak (berm-closed) fewer illness associations were seen. These different relationships under different conditions at a single beach demonstrate the difficulties using these indicators to predict health risk.  相似文献   

11.
There has been an ongoing dilemma for agencies that set criteria for safe recreational waters in how to provide for a seasonal assessment of a beach site versus guidance for day-to-day management. Typically an overall ‘safe’ criterion level is derived from epidemiologic studies of sewage-impacted beaches. The decision criterion is based on a percentile value for a single sample or a moving median of a limited number (e.g. five per month) of routine samples, which are reported at least the day after recreator exposure has occurred. The focus of this paper is how to better undertake day-to-day recreational site monitoring and management. Internationally, good examples exist where predictive empirical regression models (based on rainfall, wind speed/direction, etc.) may provide an estimate of the target faecal indicator density for the day of exposure. However, at recreational swimming sites largely impacted by non-sewage sources of faecal indicators, there is concern that the indicator-illness associations derived from studies at sewage-impacted beaches may be inappropriate. Furthermore, some recent epidemiologic evidence supports the relationship to gastrointestinal (GI) illness with qPCR-derived measures of Bacteroidales/Bacteroides spp. as well as more traditional faecal indicators, but we understand less about the environmental fate of these molecular targets and their relationship to bather risk. Modelling pathogens and indicators within a quantitative microbial risk assessment framework is suggested as a way to explore the large diversity of scenarios for faecal contamination and hydrologic events, such as from waterfowl, agricultural animals, resuspended sediments and from the bathers themselves. Examples are provided that suggest that more site-specific targets derived by QMRA could provide insight, directly translatable to management actions.  相似文献   

12.
We tested three PCR based methodologies to detect adenoviruses associated with cultivated oysters. Conventional-PCR, nested-PCR, and integrated cell culture-PCR (ICC/PCR) were first optimized using oysters seeded with know amounts of Adenovirus serotype 5 (Ad5). The maximum sensitivity for Ad5 detection was determined for each method, and then used to detect natural adenovirus contamination in oysters from three aquiculture farms in Florianopolis, Santa Catarina State, Brazil, over a period of 6 months. The results showed that the nested-PCR was more sensitive (limit of detection: 1.2 PFU/g of tissue) than conventional-PCR and ICC-PCR (limit of detection for both: 1.2 x 10(2)PFU/g of tissue) for detection of Ad5 in oyster extracts. Nested-PCR was able to detect 90% of Ad5 contamination in harvested oyster samples, while conventional-PCR was unable to detect Ad5 in any of the samples. The present work suggests that detection of human adenoviruses can be used as a tool to monitor the presence of human viruses in marine environments where shellfish grow, and that nested-PCR is the method of choice.  相似文献   

13.
Factors influencing adenovirus 5 recovery from seawater by virus concentrator methods were determined. A 19,000-fold concentration of 25 gal samples with a theoretical recovery efficiency of 90% was possible with input multiplicities of 1000 TCID50 units ml−1. Pre-treatment of orlon and cellulose acetate filters with beef extract or tween 80 solutions promoted adenovirus passage during sample clarification. Adenovirus adsorbed to textile and epoxy fiberglass filters at acid pH. Adsorption to textile filters was enhanced by 0–05 m MgCl2. No salt enhancement was necessary for adsorption to epoxy fiberglass filters. Adenovirus was recovered from adsorbent filters following elution with 3% beef extract solution adjusted to pH 9.0. Adenovirus was reconcentrated from beef extract eluates by aqueous polymer phase separation. Actual recovery of 106 PFU of adenovirus from 50 gal of a waste treatment plant effluent was made with the modified virus concentrator procedure developed in the study.  相似文献   

14.
Health risk concerns associated with household use of rooftop-harvested rainwater (HRW) constitute one of the main impediments to exploit the benefits of rainwater harvesting in the United States. However, the benchmark based on the U.S. EPA acceptable annual infection risk level of ≤1 case per 10,000 persons per year (≤10−4 pppy) developed to aid drinking water regulations may be unnecessarily stringent for sustainable water practice. In this study, we challenge the current risk benchmark by quantifying the potential microbial risk associated with consumption of HRW-irrigated home produce and comparing it against the current risk benchmark. Microbial pathogen data for HRW and exposure rates reported in literature are applied to assess the potential microbial risk posed to household consumers of their homegrown produce. A Quantitative Microbial Risk Assessment (QMRA) model based on worst-case scenario (e.g. overhead irrigation, no pathogen inactivation) is applied to three crops that are most popular among home gardeners (lettuce, cucumbers, and tomatoes) and commonly consumed raw. The infection risks of household consumers attributed to consumption of these home produce vary with the type of produce. The lettuce presents the highest risk, which is followed by tomato and cucumber, respectively. Results show that the 95th percentile values of infection risk per intake event of home produce are one to three orders of magnitude (10−7 to 10−5) lower than U.S. EPA risk benchmark (≤10−4 pppy). However, annual infection risks under the same scenario (multiple intake events in a year) are very likely to exceed the risk benchmark by one order of magnitude in some cases. Estimated 95th percentile values of the annual risk are in the 10−4 to 10−3 pppy range, which are still lower than the 10−3 to 10−1 pppy risk range of reclaimed water irrigated produce estimated in comparable studies. We further discuss the desirability of HRW for irrigating home produce based on the relative risk of HRW to reclaimed wastewater for irrigation of food crops. The appropriateness of the ≤10−4 pppy risk benchmark for assessing safety level of HRW-irrigated fresh produce is questioned by considering the assumptions made for the QMRA model. Consequently, the need of an updated approach to assess appropriateness of sustainable water practice for making guidelines and policies is proposed.  相似文献   

15.
Quantitative microbial risk assessment (QMRA) was used to evaluate the relative contribution of faecal indicators and pathogens when a mixture of human sources impacts a recreational waterbody. The waterbody was assumed to be impacted with a mixture of secondary-treated disinfected municipal wastewater and untreated (or poorly treated) sewage, using Norovirus as the reference pathogen and enterococci as the reference faecal indicator. The contribution made by each source to the total waterbody volume, indicator density, pathogen density, and illness risk was estimated for a number of scenarios that accounted for pathogen and indicator inactivation based on the age of the effluent (source-to-receptor), possible sedimentation of microorganisms, and the addition of a non-pathogenic source of faecal indicators (such as old sediments or an animal population with low occurrence of human-infectious pathogens). The waterbody indicator density was held constant at 35 CFU 100 mL−1 enterococci to compare results across scenarios. For the combinations evaluated, either the untreated sewage or the non-pathogenic source of faecal indicators dominated the recreational waterbody enterococci density assuming a culture method. In contrast, indicator density assayed by qPCR, pathogen density, and bather gastrointestinal illness risks were largely dominated by secondary disinfected municipal wastewater, with untreated sewage being increasingly less important as the faecal indicator load increased from a non-pathogenic source. The results support the use of a calibrated qPCR total enterococci indicator, compared to a culture-based assay, to index infectious human enteric viruses released in treated human wastewater, and illustrate that the source contributing the majority of risk in a mixture may be overlooked when only assessing faecal indicators by a culture-based method.  相似文献   

16.
This paper addresses risk-assessment estimates associated with air emissions from MWC facilities via the inhalation pathway. Calculations performed address selected chemical constituents with the potential highest human health effects. The calculated carcinogenic risks are small and are well below the EPA acceptable risk of 10(-4). Similarly, the calculated noncarcinogenic risks are well below the acceptable reference dose values. Calculations presented in this paper for selected constituents could be expanded to additional chemical constituents.  相似文献   

17.
18.
Over 3500 individual water samples, for 131 sampling times, targeting waterborne pathogens/fecal indicator bacteria were collected during a 7-year period from 4 sites along an intermittent stream running through a small livestock pasture system with and without cattle access-to-stream restriction measures. The study assessed the impact of cattle pasturing/riparian zone protection on: pathogen (bacterial, viral, parasite) occurrence, concentrations of fecal indicators, and quantitative microbial risk assessments (QMRA) of the risk of Cryptosporidium, Giardia and Escherichia coli O157:H7 infection in humans. Methodologies were developed to compute QMRA mean risks on the basis of water samples exhibiting potentially human infectious Cryptosporidium and E. coli based on genotyping Crytosporidium, and E. coli O157:H7 presence/absence information paired with enumerated E. coli. All Giardia spp. were considered infectious. No significant pasturing treatment effects were observed among pathogens, with the exception of Campylobacter spp. and E. coli O157:H7. Campylobacter spp. prevalence significantly decreased downstream through pasture treatments and E. coli O157:H7 was observed in a few instances in the middle of the unrestricted pasture. Densities of total coliform, fecal coliform, and E. coli reduced significantly downstream in the restricted pasture system, but not in the unrestricted system. Seasonal and flow conditions were associated with greater indicator bacteria densities, especially in the summer. Norovirus GII was detected at rates of 7–22% of samples for all monitoring sites, and rotavirus in 0–7% of samples for all monitoring sites; pasture treatment trends were not evident, however. Seasonal and stream flow variables (and their interactions) were relatively more important than pasture treatments for initially stratifying pathogen occurrence and higher fecal indicator bacteria densities. Significant positive associations among fecal indicator bacteria and Campylobacter spp. detection were observed. For QMRA, adjusting for the proportion of Cryptosporidium spp. detected that are infectious for humans reduces downstream risk estimates by roughly one order of magnitude. Using QMRA in this manner provides a more refined estimate of beneficial management practice effects on pathogen exposure risks to humans.  相似文献   

19.
J.W. Marion  S. Lemeshow 《Water research》2010,44(16):4796-4804
Recent epidemiology studies examining U.S. recreational water exposure and illness relationships have focused primarily on coastal and Great Lakes beaches. Human-made lakes in the U.S. have received little attention in epidemiology studies despite contributing to more waterborne disease epidemics annually than coastal U.S. waters. In a comprehensive beach cohort study, we examined relationships between water quality indicators and reported adverse health outcomes among users of a beach at an inland U.S. lake. Human health data was collected over 26 swimming days during the 2009 swimming season in conjunction with water quality measurements. Adverse health outcomes were reported 8-9 days post-exposure via a phone survey. Wading, playing or swimming in the water was observed to be a significant risk factor for GI illness (adjusted odds ratio (AOR) of 3.2; CI 1.1, 9.0). Among water users, Escherichia coli density was significantly associated with elevated GI illness risk where the highest E. coli quartile was associated with an AOR of 7.0 (CI 1.5, 32). GI illness associations are consistent with previous freshwater epidemiology studies. Our findings are unique in that our observations of positive associations with GI illness risk are based upon a single daily E. coli measurement. Lastly, this study focused on an understudied issue, illness risk at inland reservoirs. Our results support the usefulness of E. coli as a health-relevant indicator of water quality for this inland U.S. beach.  相似文献   

20.
A quantitative microbial risk assessment (QMRA) of Cryptosporidium, Giardia and diarrhegenic Escherichia coli (DEC) infection was performed using Monte Carlo simulations to estimate the human health risks associated with the use of canal water for recreational purposes, unrestricted and restricted irrigation in a tropical peri-urban area. Three canals receiving municipal, agricultural, and, predominantly, industrial wastewater were investigated. Identification of pathogenic protozoans revealed the major presence of Cryptosporidium hominis and both assemblages A and B of Giardia lamblia. The highest individual infection risk estimate was found to be for Giardia in an exposure scenario involving the accidental ingestion of water when swimming during the rainy season, particularly in the most polluted section, downstream of a large wholesale market. The estimated annual risks of diarrheal disease due to infection by the protozoan parasites were up to 120-fold greater than the reported disease incidence in the vicinity of the studied district and the entire Thailand, suggesting a significant host resistance to disease beyond our model's assumptions. In contrast, annual disease risk estimates for DEC were in agreement with actual cases of diarrhea in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号