首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高频感应熔化金属丝气雾化制备球形钛粉   总被引:1,自引:0,他引:1  
陆亮亮  刘雪峰  张少明  徐骏  贺会军  盛艳伟 《材料导报》2018,32(8):1267-1270, 1288
提出了新型低成本球形钛粉气雾化制备技术——高频感应熔化金属丝气体雾化技术(Wire induction heating-gas atomization,WIGA),研究了雾化气体压力、熔体温度、送料速度对粉末性能的影响。结果表明:所制钛粉末的形貌为球形,球形度较高,粉末表面存在少量"卫星球"颗粒,占比约为1%;提高雾化压力、熔体温度和降低送丝速度均使粉末平均粒径D50减小。实验所得最佳雾化参数为:雾化气体压力4.0 MPa,熔体温度2 000℃,送料速度0.8m/min,在此条件下得到的钛粉末平均粒径为41.8μm。  相似文献   

2.
Various components used in the industries may benefit from having layered structures with gradient porosity in each layer. In this paper, bi-layer composite components with gradient porosity made by Powder Injection Moulding (PIM) have been investigated. The ceramic spinel materials of AR7845 having coarse particle size and AR7820 having fine particle size were used. It shows that AR7820 and AR7845 powders have different sintering behaviour with the fine powder having faster shrinkage as compared to coarse powder. Curling or bending is found in the bi-layer rectangular composite component fabricated from these two powders. This is due to induced stress caused mainly by strain rate mismatch of the two materials during sintering. The degree of curling is also related to thickness ratio of two materials in each layer. Composite components can be designed into cylindrical shape so as to avoid curling as observed in rectangular composite components. No interfacial debonding and part cracking are observed in both rectangular and cylindrical composite components. The microstructure shows that continuously straight joining lines along the interfaces are formed in these composite components.  相似文献   

3.
《Advanced Powder Technology》2019,30(8):1709-1714
In this work, we used radio frequency (RF) plasma spheroidization to transform irregularly shaped tantalum powders to spherical ones. After RF plasma treatment, the majority of particles were spheroidized with the presence of a small number of irregular particles. The mean particle size becomes finer and the particle size distribution narrower, as compared with the starting powder. A few non-spherical or even irregular tantalum powders still existed. Although argon gas was used in the plasma chamber, oxygen contamination still occurred. A thin layer of oxide film was found on the surface of particles, while the particle interiors were inferred free of oxygen. The powder characteristics had been significantly improved. After spheroidization treatment, the apparent density, tap density and powder flowability significantly increased from 7.03 g/cm3 to 8.9 g/cm3, 8.6 g/cm3 to 10.05 g/cm3, and 12.41 s/(50 g) to 7.96 s/(50 g), respectively, in comparison with that of raw powders. This study presents a feasible method for fabricating spherical tantalum powders, which may potentially broaden the application for metal additive manufacturing.  相似文献   

4.
Semiconducting tin oxide precursor powders were synthesized via three different chemical processing routes. The influence of powder processing conditions on the physical properties, e.g., particle size, surface area and phase composition of both uncalcined and calcined materials, was investigated. These powders were used to fabricate gas sensors using thick-film screen-printing technology. The effect of precursor powders, sintering conditions, sensor temperature and Pd catalyst on the carbon monoxide, methane, propane and ethanol gas sensing characteristics of the sensors were investigated. Sensors were also fabricated using tin oxide powders obtained from a commercial source and their gas sensing properties were also investigated. The data indicates that the powder processing methodology, sensor fabrication conditions and Pd catalyst can profoundly influence the physical characteristics as well as the gas sensing properties of the sensors.  相似文献   

5.
There are a number of process parameters which affect the characteristics of metal powders produced by free fall gas atomization. In the following work effects of various process parameters like apex angle of atomizer, focal length of atomizer, number of nozzles, diameter of nozzles, diameter of liquid metal delivery tube, superheat of liquid metal and type of metal etc. were studied on their surface morphology. It was observed that shape of powder particles depends on apex angle, superheat of liquid metal, type of metal and particle size range within a powder collective. Other parameters like focal length of atomizer, number of nozzles, diameter of nozzles and diameter of liquid metal delivery tube were found to have no effect on the shape of powder particles. However, Surface porosity and solidification shrinkage were observed on almost all types of metal powders.  相似文献   

6.
Discharge characteristics of fine polydisperse granular powders of equal-solid density and near-spherical particle shape through a conical hopper were investigated by measuring solid discharge rates of powders. Effects of orifice size of hopper and size distribution of powders on discharge rate were determined by means of experiments conducted for six different sizes of hopper orifice and three different powder types under gravity flow conditions. A new effective mean diameter characterizing polydisperse powders is first introduced and determined from the particle size versus weight fraction distribution of a powder as the size corresponding to 50% cumulative weight fraction. This effective mean diameter was efficiently used in two modified forms of the Beverloo equation to predict discharge rates of polydisperse powders through hopper orifices.  相似文献   

7.
Discharge characteristics of fine polydisperse granular powders of equal-solid density and near-spherical particle shape through a conical hopper were investigated by measuring solid discharge rates of powders. Effects of orifice size of hopper and size distribution of powders on discharge rate were determined by means of experiments conducted for six different sizes of hopper orifice and three different powder types under gravity flow conditions. A new effective mean diameter characterizing polydisperse powders is first introduced and determined from the particle size versus weight fraction distribution of a powder as the size corresponding to 50% cumulative weight fraction. This effective mean diameter was efficiently used in two modified forms of the Beverloo equation to predict discharge rates of polydisperse powders through hopper orifices.  相似文献   

8.
《Advanced Powder Technology》2020,31(7):2912-2920
Flowability, particle size distribution and particle inner pore features for powders of Ti-6Al-4V, 316-steel, and Co-29Cr-6Mo alloys produced by plasma rotating electrode process (PREP) at various rotation speeds are analyzed by using scanning electron microscopy (SEM) and synchrotron X-ray computed tomography (CT). The results show that powder flowability is related to particle size distribution, surface morphology and dynamic friction coefficient of the alloy itself. This results in the higher powder flowability at low rotation speed than that at high rotation speed. Average particle size is roughly proportional to the square root of the reciprocal of rotation speed. In addition, particle size has an important effect on the particle porosity and the number faction of hollow powder in coarse powder is obviously larger than that in fine powder. Meanwhile, the alloy composition also plays a key role on porosity due to the various surface tension of alloys.  相似文献   

9.
魏明炜  陈岁元  郭快快  梁京  刘常升 《材料导报》2017,31(12):64-67, 78
采用电极感应熔炼气雾化(EIGA)法制备了激光3D打印用TA15钛合金粉末,研究了熔炼功率对粉末收得率、粒径分布、粉末形貌、松装密度和流动性等特征的影响。结果表明,随着感应熔炼功率增大,粉末收得率和平均粒径减小,当熔炼功率为65kW时,粉末收得率超过62%,中值粒径D_(50)小于100μm,松装密度为2.731g/cm3,流动性为22.46s/50g。对粒径50~180μm的粉末采用激光3D打印,激光直接沉积成形的TA15钛合金样品表面无宏观裂纹和气孔等缺陷,金相组织为细晶网篮组织,制备的TA15钛合金粉末具有良好的可打印性。  相似文献   

10.
Nanometer-sized ZnO powders for photocatalytic applications were prepared by a solution combustion method with various starting materials and fuels. It was easy to obtain single-phase ZnO powders using the solution combustion method regardless of the starting materials and fuels. However, the particle size and shape of the synthesized ZnO powders were different than the used fuel. Using glycine as a fuel, the particle shape of ZnO powders was spherical with uniform nanosize. On the other hand, using carbohydrazide as a fuel, the particle shape was platelike. The ZnO powder synthesized using Zn(OH)2 and glycine as starting material and fuel, respectively, showed good powder characteristics, such as average grain size of 75 nm and the specific surface area of 94 m2/g. The average particle size and specific surface area were greatly dependent on the types of oxidants and fuels. Removal of silver ions from a used photo-film developing solution was attempted to examine the photocatalytic activity of the prepared ZnO powders. It also showed excellent photocatalytic properties in that the silver ions were completely removed from the solution within 3 min.  相似文献   

11.
Additive manufacturing processes as for instance selective laser melting or electron beam melting are becoming more common and just turning into standard manufacturing processes for metal components. Nevertheless, these processes are still new compared to classic powder metallurgy manufacturing routes such as pressing and sintering. Hence not all necessary requirements for the powders in use are fully known yet. This makes an increase in control of the powder properties a crucial task to achieve. To reach this goal one must understand the different influences on the powder production process from the beginning of the whole production route. In this work, the influence of the spray chamber flow on the particle morphology is examined. The nozzle system used to produce the metal powders is a close-coupled atomization system with a convergent-divergent gas nozzle configuration. The particle morphology as well as the particle size distribution have been analyzed to examine the influence of the atomization gas flow compared to an additional use of a coaxial gas flow. To review the changes of the flow patterns, computational fluid dynamic simulations have been performed. The particle trajectories were calculated to assess the change in particle behavior as well. Atomization experiments have been conducted with an AISI 52100 (1.3505) steel in a small batch atomization plant to evaluate the influence of the change in flow on the particle size distribution and circularity. The experimental results show that a use of additional coaxial gas leads to an increase in particle circularity up to 10% for relevant particle sizes. An approach for the quantification of satellite occurrence is given by examination of the shift of the particle size distribution to smaller diameters.  相似文献   

12.
Bulk tungsten samples were prepared by consolidating nanosize tungsten powders using the technique of plasma pressure compaction. This innovative sintering technique offers the intrinsic capability of producing bulk samples having near theoretical density. Five different powder particle sizes, in the nanoscale, were chosen and bulk samples obtained by consolidating the powders under identical conditions of temperature, pressure and time using the technique of plasma pressure compaction. Microstructural observations and density measurement provide evidence for the presence of minimal porosity following consolidation. The influence of initial size of the powder particles on microstructural development to include the presence and distribution of porosity, density, micro-hardness, stiffness and nano-hardness is presented and discussed.  相似文献   

13.
Nano-sized yttria (Y2O3) powders were successfully synthesized at a low temperature of 400 degrees C by a simple polymer solution route. PVA polymer, as an organic carrier, contributed to an atom-scale homogeneous precursor gel and it resulted in fully crystallized, nano-sized yttria powder with high specific surface area through the low temperature calcination. In this process, the content of PVA, calcination temperature and heating time affected the microstructure and crystallization behavior of the powders. The development of crystalline phase and the final particle size were strongly dependant on the oxidation reaction from the polymer burn-out step and the PVA content. In this paper, the PVA solution technique for the fabrication of nano-sized yttria powders is introduced. The effects of PVA content and holding time on the powder morphology and powder specific surface area are also studied. The characterization of the synthesized powders is examined by using XRD, DTA/TG, SEM, TEM and nitrogen gas adsorption. The yttria powder synthesized from the PVA content of 3:1 ratio and calcined at 400 degrees C had a crystallite size of about 20 nm or less with a high surface areas of 93.95-120.76 m2 g(-1).  相似文献   

14.
The increase of particles surface area can optimize the dispersion state of biocomposite components and enhance their properties. First in this paper, we aimed to elaborate a novel biocomposite without any treatments. Plasticized wheat gluten (WG), was filled with 0–20% of olive pomace (OP) powder. The second objective was the improvement of biocomposite properties using physical treatment. High-energy ball milling process was applied on the blend of wheat gluten and olive pomace powders (MPs). The grinding effect of particle shape, size and distribution in biocomposite was characterised by particle size distribution using a laser-light diffraction and by SEM analysis. The cryo-fractured surface of selected films, mechanical properties, moisture absorption and thermal properties of both biocomposites were described in details. It was found that the sensitivity of biocomposites to moisture absorption was reduced with the increase of filler content after the applying of high-energy ball milling process. The thermal stability of OP biocomposite decreased with the increase of loading, while that of MPs was unaffected by high-energy ball milling process. This process affects the physical and morphological characteristics of the powders. The mechanical properties were improved by grinding process at filler content lower than15%.  相似文献   

15.
The microstructure and the aqueous corrosion resistance of coatings produced by High Velocity Oxy-Fuel (HVOF) spraying techniques has been investigated. Two types of spraying processes have been employed i.e., Topgun HVOF using propylene gas and Met-Jet II HVOF with kerosene liquid fuel together with two forms of Ni-20%Cr powders i.e., water and inert gas atomised. The oxide, porosity and the amount of melted material in the coatings were characterised using scanning electron microscopy (SEM) and X-ray diffraction (XRD), whilst the corrosion resistance of the coatings and the ability to protect the underlying mild steel substrate was evaluated by use of a salt spray chamber and potentiodynamic tests.MetJet II produced coatings from gas-atomised powder with a lower oxide content, a reduction in porosity and less melted material, as the residence time of particles in the combusted gas stream was shortened. Water atomised powder formed a higher volume fractions of unmelted material and porosity when compared with gas-atomised powder coatings. This was encouraged by the presence of a thin oxide layer, which formed during the production of the water-atomised powder. The orientation of oxides and pores in the coatings had a major effect on their aqueous corrosion behaviour. Better protection for the underlying steel substrate (>3000 h exposure in a salt spray test) was obtained with the coating produced from the gas-atomised powder with the MetJet II system, which had the lowest porosity/oxide content running perpendicular to the substrate surface. The major factor in preventing attack on the mild steel substrate is the amount of interconnecting porosity which allows the corrodant to percolate through the coating.  相似文献   

16.
Nanosized alumina (Al2O3) powders had been successfully fabricated by a simple polymer solution route employing polyvinyl alcohol (PVA) as an organic carrier. The fabricated alumina powders had an average particle size of 6.1 nm with a high specific surface area of 99.5 m2/g. As well, the alumina powders were fully crystallized to alpha phase at a relatively low temperature of 1000 degrees C. The PVA polymer contributed to a soft and porous microstructure of the calcined alumina powders, and ball-milling process with the porous powders was effective in making nanosized alumina powders. In addition, the content and degree of polymerization of the PVA affected the development of crystallization and powder properties. In this study, the simple polymer technique and milling process for the fabrication of nanosized alumina powders are introduced, and the effects of PVA on the property of the synthesized alumina powders are observed. For the study, the characterizations of the synthesized powders are conducted by using XRD, TEM, particle size analyzer, and nitrogen gas adsorption.  相似文献   

17.
ABSTRACT

Accurate and repeatable size measurement continues to be a problem in particulate materials processing. Eight different powders commonly employed for the production of high performance metal and ceramic components were used as a basis for examining the effects of powder characteristics on particle size measurement. Several different techniques were used to measure the particle size, including: laser diffraction with the powder dispersed both wet and dry, aerodynamic time-of-flight, electrical zone sensing, dynamic light scattering or photon correlation spectroscopy, and optical image analysis. After reviewing the size data obtained from these vastly different techniques, it is concluded that accuracy is strongly dependent on dispersion of the powder in the carrier fluid. Once adequately dispersed, one obtains analogous particle size information, independent of the instrument.  相似文献   

18.
ABSTRACT

This paper presents one particular method of Agglomeration, which incorporates two specific characteristics unique to the method, by their combination. Any time powders are mixed with liquids, agglomeration to some degree is the result. By proper selection of the mixing parameters and careful control of the total powder:liquid ratio, reliable particle size distribution is possible. Instant mixing of powder(s) with liquid(s) is capable of producing dust free, flowable granules, which retain many of the beneficial properties of the parent powder(s). These properties, which may be enhanced by proper selection of liquid or solid additives, include: dispersibility, solubility, compressibility, porosity, effective surface area, and wettability.  相似文献   

19.
为获得更好的防护+装饰双重效果,采用不同粒径(200,400,800,1 000,1 200目)的铜金粉,利用机械镀技术在钢铁基体表面制备了铜-锌复合镀层。采用称重法分析了镀层的致密度,采用贴滤纸法检验了镀层孔隙率,采用划线划格法分析了镀层的结合强度,采用全浸腐蚀法及电化学极化法分析了镀层的耐腐蚀性能。结果表明:不同粒径铜金粉制备的镀层均覆盖完整,随铜粉粒径减小,复合镀层孔隙分布减少;随着铜粉粒径的减小,镀层的致密度逐渐增加,当铜粉粒径为1 000目时,Cu-Zn镀层的致密度已大于金属锌的密度;随着铜粉粒径的减小,镀层的结合强度增加,当铜粉粒径为200目时镀层的结合强度较差,而铜粉粒径小于400目时镀层的结合强度明显提高;随着铜粉粒径的减小,镀层的全浸腐蚀速率逐渐减小,耐腐蚀性增强。  相似文献   

20.
一步法合成高纯度碳化硅粉体的研究   总被引:1,自引:0,他引:1  
利用液态硅为原料, 以碳和二氧化硅粉末组成的混合物作为催化剂, 通过液态硅与一氧化碳之间的气-液相碳热反应, 一步合成了高纯度的碳化硅微细粉体, 制得的碳化硅粉体的平均颗粒尺寸为D50=0.41μm. 利用XRD、SEM、激光粒度分析和元素分析对粉体进行了表征, 并讨论了碳化硅粉体的形成机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号