首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent developments in super-resolution fluorescence microscopic techniques (SRM) have allowed for nanoscale imaging that greatly facilitates our understanding of nanostructures. However, the performance of single-molecule localization microscopy (SMLM) is significantly restricted by the image analysis method, as the final super-resolution image is reconstructed from identified localizations through computational analysis. With recent advancements in deep learning, many researchers have employed deep learning-based algorithms to analyze SMLM image data. This review discusses recent developments in deep-learning-based SMLM image analysis, including the limitations of existing fitting algorithms and how the quality of SMLM images can be improved through deep learning. Finally, we address possible future applications of deep learning methods for SMLM imaging.  相似文献   

2.
Spatial resolution in far-field fluorescence microscopy is limited by diffraction to about 200 nm. With the aid of photoswitchable fluorophores, the diffraction barrier has been successfully overcome, allowing unprecedented resolution in the order of single biomolecules. The imaging process demands markers with strict and reliable control of the switching, to keep most of the markers in a non-emissive state most of the time and to bring a tiny number back to an emissive state, and detection at the single-molecule level. Herein, we describe the use of rhodamine spiroamides with unique photophysical properties as molecular probes for super-resolution techniques based on the localization of single emitters. This family of photochromic and fluorescent compounds fulfils the stringent requirements for such imaging methods; these compounds are robust and capable of enduring single-molecule detection in diverse environments. This has allowed meaningful images with resolution down to a few nanometres. Their design, synthesis and implementation is discussed along with imaging applications in material and life sciences.  相似文献   

3.
In vivo optical Imaging is an inexpensive and highly sensitive modality to investigate and follow up diseases like breast cancer. However, fluorescence labels and specific tracers are still works in progress to bring this promising modality into the clinical day-to-day use. In this study an anti-MUC-1 binding single-chain antibody fragment was screened, produced and afterwards labeled with newly designed and surface modified NaYF(4):Yb,Er upconversion nanoparticles as fluorescence reporter constructs. The MUC-1 binding of the conjugate was examined in vitro and in vivo using modified state-of-the-art small animal Imaging equipment. Binding of the newly generated upconversion nanoparticle based probe to MUC-1 positive cells was clearly shown via laser scanning microscopy and in an initial proof of principal small animal optical imaging approach.  相似文献   

4.
Fluorescence microscopy is essential for a detailed understanding of cellular processes; however, live-cell preservation during imaging is a matter of debate. In this study, we proposed a guide to optimize advanced light microscopy approaches by reducing light exposure through fluorescence lifetime (τ) exploitation of red/near-infrared dyes. Firstly, we characterized key instrumental elements which revealed that red/near-infrared laser lines with an 86x (Numerical Aperture (NA) = 1.2, water immersion) objective allowed high transmission of fluorescence signals, low irradiance and super-resolution. As a combination of two technologies, i.e., vacuum tubes (e.g., photomultiplier) and semiconductor microelectronics (e.g., avalanche photodiode), type S, X and R of hybrid detectors (HyD-S, HyD-X and HyD-R) were particularly adapted for red/near-infrared photon counting and τ separation. Secondly, we tested and compared lifetime-based imaging including coarse τ separation for confocal microscopy, fitting and phasor plot analysis for fluorescence lifetime microscopy (FLIM), and lifetimes weighting for enhanced stimulated emission depletion (STED) nanoscopy, in light of red/near-infrared multiplexing. Mainly, we showed that the choice of appropriate imaging approach may depend on fluorochrome number, together with their spectral/lifetime characteristics and STED compatibility. Photon-counting mode and sensitivity of HyDs together with phasor plot analysis of fluorescence lifetimes enabled the flexible and fast imaging of multi-labeled living H28 cells. Therefore, a combination of red/near-infrared dyes labeling with lifetime-based strategies offers new perspectives for live-cell imaging by enhancing sample preservation through acquisition time and light exposure reduction.  相似文献   

5.
Single-molecule imaging is emerging as a revolutionary approach to studying fundamental questions in plants. However, compared with its use in animals, the application of single-molecule imaging in plants is still underexplored. Here, we review the applications, advantages, and challenges of single-molecule fluorescence imaging in plant systems from the perspective of methodology. Firstly, we provide a general overview of single-molecule imaging methods and their principles. Next, we summarize the unprecedented quantitative details that can be obtained using single-molecule techniques compared to bulk assays. Finally, we discuss the main problems encountered at this stage and provide possible solutions.  相似文献   

6.
Recent research has provided strong evidence that neurodegeneration may develop from an imbalance between synaptic structural components in the brain. Lately, inhibitory synapses communicating via the neurotransmitters GABA or glycine have come to the center of attention. Increasing evidence suggests that imbalance in the structural composition of inhibitory synapses affect deeply the ability of neurons to communicate effectively over synaptic connections. Progressive failure of synaptic plasticity and memory are thus hallmarks of neurodegenerative diseases. In order to prove that structural changes at synapses contribute to neurodegeneration, we need to visualize single-molecule interactions at synaptic sites in an exact spatial and time frame. This visualization has been restricted in terms of spatial and temporal resolution. New developments in electron microscopy and super-resolution microscopy have improved spatial and time resolution tremendously, opening up numerous possibilities. Here we critically review current and recently developed methods for high-resolution visualization of inhibitory synapses in the context of neurodegenerative diseases. We present advantages, strengths, weaknesses, and current limitations for selected methods in research, as well as present a future perspective. A range of new options has become available that will soon help understand the involvement of inhibitory synapses in neurodegenerative disorders.  相似文献   

7.
γ-Glutamyltranspeptidase (GGT) is a cell-membrane-bound protease that participates in cellular glutathione and cysteine homeostasis, which are closely related to many physiological and pathological processes. The accurate measurement of GGT activity is useful for the early diagnosis of diseases. In the past few years, many efforts have been made to build optical imaging probes for the detection of GGT activity both in vitro and in vivo. In this Minireview, recent advances in the development of various optical imaging probes for GGT, including activatable fluorescence probes, ratiometric fluorescence probes, and activatable bioluminescence probes, are summarized. This review starts from the instruction of the GGT enzyme and its biological functions, followed by a discussion of activatable fluorescence probes that show off–on fluorescence in response to GGT. GGT-activatable two-photon fluorescence imaging probes with improved imaging depth and spatial resolution are also discussed. Ratiometric fluorescence probes capable of accurately reporting on GGT levels through a self-calibration mechanism are discussed, followed by describing GGT-activatable bioluminescence probes that can offer a high signal-to-background ratio to detect GGT in living mice. Finally, current challenges and further perspectives for the development of molecular imaging probes for GGT are addressed.  相似文献   

8.
New resolutions: The combined use of photoactivatable fluorescent proteins and synthetic fluorophores considerably expands our options for multicolor super-resolution fluorescence imaging and enables for the first time the simultaneous imaging of more than two proteins with subdiffraction optical resolution in living cells.  相似文献   

9.
Single-molecule live-cell imaging is the most direct approach for monitoring the motility of molecules in living cells. Considering the relationship between the motility of molecules and their function, information obtained from single-molecule imaging involves essential clues for understanding the regulatory mechanisms of the processes of target molecules, and translation to applied sciences such as drug discovery. In this Concept, examples of single-molecule imaging studies on G protein-coupled receptors (GPCRs) are mainly introduced, and recent techniques of single-molecule imaging for overcoming the limitation of single-molecule live-cell imaging are discussed. Based on these studies, the prospects of single-molecule imaging will be outlined.  相似文献   

10.
Protein expression and localization are often studied in vivo by tagging molecules with green fluorescent protein (GFP), yet subtle changes in protein levels are not easily detected. To develop a sensitive in vivo method to amplify fluorescence signals and allow cell‐specific quantification of protein abundance changes, we sought to apply an enzyme‐activated cellular fluorescence system in vivo by delivering ester‐masked fluorophores to Caenorhabditis elegans neurons expressing porcine liver esterase (PLE). To aid uptake into sensory neuron membranes, we synthesized two novel fluorogenic hydrolase substrates with long hydrocarbon tails. Recombinant PLE activated these fluorophores in vitro. In vivo activation occurred in sensory neurons, along with potent activation in intestinal lysosomes quantifiable by imaging and microplate and partially attributable to gut esterase 1 (GES‐1) activity. These data demonstrate the promise of biorthogonal hydrolases and their fluorogenic substrates as in vivo neuronal imaging tools and for characterizing endogenous C. elegans hydrolase substrate specificities.  相似文献   

11.
Near-infrared (NIR)-emitting fluorescent probes are widely used for molecular imaging at the whole-body level. However, NIR-emitting fluorescent probes emitting over λ=700 nm are not suitable for molecular imaging at the cellular level, because most of the conventional fluorescence microscopes have very low optical sensitivity in the NIR region. Thus, to achieve fluorescence imaging at the cellular and whole-body levels by using single probes, visible and NIR-emitting dual-color fluorescent probes are desirable. For dual-color fluorescence molecular imaging, we synthesized fluorescent, recombinant-protein-conjugated, NIR-emitting quantum dots (QDs), in which the recombinant protein consists of enhanced green fluorescent protein (EGFP) and the immunoglobulin binding domain (B1) of protein G. This dual-color fluorescent QD probe binds the Fc region of immunoglobulin G (IgG) through its B1 domain at the QD surface and acts as a molecular-imaging probe at both the cellular and whole-body levels. In this paper, we present the synthesis of fluorescent, recombinant protein (HisEGFP-GB1)-conjugated, NIR-emitting QDs and their application to the dual-color molecular imaging of breast cancer cells in vitro and in vivo.  相似文献   

12.
Fluorescent probes that emit in the near-infrared (NIR, 700–1,300 nm) region are suitable as optical contrast agents for in vivo fluorescence imaging because of low scattering and absorption of the NIR light in tissues. Recently, NIR quantum dots (QDs) have become a new class of fluorescent materials that can be used for in vivo imaging. Compared with traditional organic fluorescent dyes, QDs have several unique advantages such as size- and composition-tunable emission, high brightness, narrow emission bands, large Stokes shifts, and high resistance to photobleaching. In this paper, we report a facile method for the preparation of highly fluorescent, water-soluble glutathione (GSH)-coated NIR QDs for in vivo imaging. GSH-coated NIR QDs (GSH-QDs) were prepared by surface modification of hydrophobic CdSeTe/CdS (core/shell) QDs. The hydrophobic surface of the CdSeTe/CdS QDs was exchanged with GSH in tetrahydrofuran-water. The resulting GSH-QDs were monodisperse particles and stable in PBS (phosphate buffered saline, pH = 7.4). The GSH-QDs (800 nm emission) were highly fluorescent in aqueous solutions (quantum yield = 22% in PBS buffer), and their hydrodynamic diameter was less than 10 nm, which is comparable to the size of proteins. The cellular uptake and viability for the GSH-QDs were examined using HeLa and HEK 293 cells. When the cells were incubated with aqueous solutions of the GSH-QDs (10 nM), the QDs were taken into the cells and distributed in the perinuclear region of both cells. After 12 hrs incubation of 4 nM of GSH-QDs, the viabilities of HeLa and HEK 293 cells were ca. 80 and 50%, respectively. As a biomedical utility of the GSH-QDs, in vivo NIR-fluorescence imaging of a lymph node in a mouse is presented.  相似文献   

13.
Fluorescence imaging of single molecules at room temperature is a powerful technique for studying complex condensed phase systems and revealing structure and dynamics hidden by ensemble measurements. Successful single-molecule spectroscopic experiments rely upon strong emitters that can be detected at the level of individual copies above the relevant background signals. This Account discusses a class of nonlinear optical chromophores that not only are well-suited for single-molecule imaging but also offer additional beneficial properties such as a significant ground-state dipole moment, moderate hyperpolarizability, and sensitivity to local environment. An overview of the photophysical properties of several members of this class of molecules as well as a mechanism to help understand the environmental sensitivity is presented. Some preliminary applications of the chromophores as single-molecule reporters in cellular and polymer systems are discussed, along with detection of the emitters by two-photon fluorescence.  相似文献   

14.
Matrix metalloproteinase 2 (MMP-2) in metastatic cancer tissue, which is associated with a poor prognosis, is a potential target for tumor imaging in vivo. Here, we describe a metastatic cancer cell-targeted protein nanocage. An MMP-2-binding peptide, termed CTT peptide (CTTHWGFTLC), was conjugated to the surface of a naturally occurring heat shock protein nanocage by genetic modification. The engineered protein nanocages showed a binding affinity for MMP-2 and selective uptake in cancer cells that highly expressed MMP-2 in vitro. In near-infrared fluorescence imaging, the nanocages showed specific and significant accumulation in tumor tissue after intravenous injection in vivo. These protein nanocages conjugated with CTT peptide could be potentially applied to a noninvasive near-infrared fluorescence detection method for imaging gelatinase activity in metastatic tumors in vivo.  相似文献   

15.
Fluorescence imaging of mitochondria is of great interest to understand its functions and roles in various critical bioprocesses. Conventional fluorescence reagents for mitochondrial imaging and tracking suffer from various problems such as poor photostability and high cytotoxicity. The emerging of fluorogens with aggregation-induced emission (AIE) property provides great opportunities to develop mitoprobes with high specificity, good photostability and multiple functions for mitochondrial imaging and tracking. This review summarizes the recent advance of AIE mitoprobes, including the design principle for AIE mitoprobes, the applications of AIE mitoprobes for super-resolution mitochondrial imaging and tracking, as well as the therapeutic functions of AIE mitoprobes for cancer cell ablation.  相似文献   

16.
The rapid development of super-resolution microscopy (SRM) techniques opens new avenues to examine cell and tissue details at a nanometer scale. Due to compatibility with specific labelling approaches, in vivo imaging and the relative ease of sample preparation, SRM appears to be a valuable alternative to laborious electron microscopy techniques. SRM, however, is not free from drawbacks, with the rapid quenching of the fluorescence signal, sensitivity to spherical aberrations and light scattering that typically limits imaging depth up to few micrometers being the most pronounced ones. Recently presented and robustly optimized sets of tissue optical clearing (TOC) techniques turn biological specimens transparent, which greatly increases the tissue thickness that is available for imaging without loss of resolution. Hence, SRM and TOC are naturally synergistic techniques, and a proper combination of these might promptly reveal the three-dimensional structure of entire organs with nanometer resolution. As such, an effort to introduce large-scale volumetric SRM has already started; in this review, we discuss TOC approaches that might be favorable during the preparation of SRM samples. Thus, special emphasis is put on TOC methods that enhance the preservation of fluorescence intensity, offer the homogenous distribution of molecular probes, and vastly decrease spherical aberrations. Finally, we review examples of studies in which both SRM and TOC were successfully applied to study biological systems.  相似文献   

17.
Due to their unique properties—coherent radiation, diffraction limited focusing, low spectral bandwidth and in many cases short light pulses—lasers play an increasing role in live cell microscopy. Lasers are indispensable tools in 3D microscopy, e.g., confocal, light sheet or total internal reflection microscopy, as well as in super-resolution microscopy using wide-field or confocal methods. Further techniques, e.g., spectral imaging or fluorescence lifetime imaging (FLIM) often depend on the well-defined spectral or temporal properties of lasers. Furthermore, laser microbeams are used increasingly for optical tweezers or micromanipulation of cells. Three exemplary laser applications in live cell biology are outlined. They include fluorescence diagnosis, in particular in combination with Förster Resonance Energy Transfer (FRET), photodynamic therapy as well as laser-assisted optoporation, and demonstrate the potential of lasers in cell biology and—more generally—in biomedicine.  相似文献   

18.
Living cells use surface molecules such as receptors and sensors to acquire information about and to respond to their environments. The cell surface machinery regulates many essential cellular processes, including cell adhesion, tissue development, cellular communication, inflammation, tumor metastasis, and microbial infection. These events often involve multimolecular interactions occurring on a nanometer scale and at very high molecular concentrations. Therefore, understanding how single-molecules localize, assemble, and interact on the surface of living cells is an important challenge and a difficult one to address because of the lack of high-resolution single-molecule imaging techniques. In this Account, we show that atomic force microscopy (AFM) and near-field scanning optical microscopy (NSOM) provide unprecedented possibilities for mapping the distribution of single molecules on the surfaces of cells with nanometer spatial resolution, thereby shedding new light on their highly sophisticated functions. For single-molecule recognition imaging by AFM, researchers label the tip with specific antibodies or ligands and detect molecular recognition signals on the cell surface using either adhesion force or dynamic recognition force mapping. In single-molecule NSOM, the tip is replaced by an optical fiber with a nanoscale aperture. As a result, topographic and optical images are simultaneously generated, revealing the spatial distribution of fluorescently labeled molecules. Recently, researchers have made remarkable progress in the application of near-field nanoscopy to image the distribution of cell surface molecules. Those results have led to key breakthroughs: deciphering the nanoscale architecture of bacterial cell walls; understanding how cells assemble surface receptors into nanodomains and modulate their functional state; and understanding how different components of the cell membrane (lipids, proteins) assemble and communicate to confer efficient functional responses upon cell activation. We anticipate that the next steps in the evolution of single-molecule near-field nanoscopy will involve combining single-molecule imaging with single-molecule force spectroscopy to simultaneously measure the localization, elasticity, and interactions of cell surface molecules. In addition, progress in high-speed AFM should allow researchers to image single cell surface molecules at unprecedented temporal resolution. In parallel, exciting advances in the fields of photonic antennas and plasmonics may soon find applications in cell biology, enabling true nanoimaging and nanospectroscopy of individual molecules in living cells.  相似文献   

19.
Accumulating evidence suggests that microorganisms produce various nanoparticles that exhibit a variety of biological functions. The structure of these bacterial nanoparticles ranges from membrane vesicles composed of membrane lipids to multicomponent proteinaceous machines. Of bacterial nanoparticles, bacterial phage tail-like nanoparticles, associated with virus-related genes, are found in bacteria from various environments and have diverse functions. Extracellular contractile injection systems (eCISs), a type of bacterial phage tail-like nanostructure, have diverse biological functions that mediate the interactions between the producer bacteria and target eukaryote. Known gram-negative bacterial eCISs can act as protein translocation systems and inject effector proteins that modulate eukaryotic cellular processes by attaching to the target cells. Further investigation of the functions of eCISs will facilitate the application of these nanomachines as nano-sized syringes in the field of nanomedicine and vaccine development. This review summarises the recent progress in elucidating the structures and biological functions of nanoparticles that resemble the tail components of phages that infect bacteria and discusses directions for future research to improve the clinical applicability of virus-related bacterial nanoparticles.  相似文献   

20.
Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM) have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号