首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There has been an ardent interest in herbivore saliva due to its roles in inducing plant defenses and its impact on herbivore fitness. Two techniques are described that inhibit the secretion of labial saliva from the caterpillar, Helicoverpa zea, during feeding. The methods rely on cauterizing the caterpillar's spinneret, the principal secretory structure of the labial glands, or surgically removing the labial salivary gland. Both methods successfully inhibit secretion of saliva and the principal salivary enzyme glucose oxidase. Caterpillars with inhibited saliva production feed at similar rates as the untreated caterpillars, pupate, and emerge as adults. Glucose oxidase has been suggested to increase the caterpillar's survival through the suppression of inducible anti-herbivore defenses in plants. Tobacco (Nicotiana tabacum) leaves fed on by caterpillars with ablated salivary glands had significantly higher levels of nicotine, an inducible anti-herbivore defense compound of tobacco, than leaves fed upon by caterpillars with intact labial salivary glands. Tomato (Lycopersicon esculentum) leaves fed upon by caterpillars with suppressed salivary secretions showed greatly reduced evidence of hydrogen peroxide formation compared to leaves fed upon by intact caterpillars. These two methods are useful techniques for determining the role that saliva plays in manipulating plant anti-herbivore defenses.  相似文献   

2.
Previous work identified aphids and caterpillars as having distinct effects on plant responses to herbivory. We sought to decipher these interactions across different levels of biological organization, i.e., molecular, biochemical, and organismal, with tomato plants either damaged by one 3rd-instar beet armyworm caterpillar (Spodoptera exigua), damaged by 40 adult potato aphids (Macrosiphum euphorbiae), simultaneous damaged by both herbivores, or left undamaged (controls). After placing insects on plants, plants were transferred to a growth chamber for 5 d to induce a systemic response. Subsequently, individual leaflets from non-damaged parts of plants were excised and used for gene expression analysis (microarrays and quantitative real-time PCR), C/N analysis, total protein analysis, proteinase inhibitor (PI) analysis, and for performance assays. At the molecular level, caterpillars up-regulated 56 and down-regulated 29 genes systemically, while aphids up-regulated 93 and down-regulated 146 genes, compared to controls. Although aphids induced more genes than caterpillars, the magnitude of caterpillar-induced gene accumulation, particularly for those associated with plant defenses, was often greater. In dual-damaged plants, aphids suppressed 27% of the genes regulated by caterpillars, while caterpillars suppressed 66% of the genes regulated by aphids. At the biochemical level, caterpillars induced three-fold higher PI activity compared to controls, while aphids had no effects on PIs either alone or when paired with caterpillars. Aphid feeding alone reduced the foliar C/N ratio, but not when caterpillars also fed on the plants. Aphid and caterpillar feeding alone had no effect on the amount of protein in systemic leaves; however, both herbivores feeding on the plant reduced the amount of protein compared to aphid-damaged plants. At the organismal level, S. exigua neonate performance was negatively affected by prior caterpillar feeding, regardless of whether aphids were present or absent. This study highlights areas of concordance and disjunction between molecular, biochemical, and organismal measures of induced plant resistance when plants are attacked by multiple herbivores. In general, our data produced consistent results when considering each herbivore separately but not when considering them together.  相似文献   

3.
Phytochemical defense responses of plants are often herbivore-specific and can be affected by a herbivore’s feeding mode. However, comprehensive studies documenting the impact of multiple herbivores from different feeding guilds on induced phytochemical responses in distal leaves and its consequences for plant-mediated herbivore interactions are limited and findings are inconsistent. We investigated how herbivory by leaf-chewing caterpillars, cell-content feeding spider mites and phloem-feeding aphids and whiteflies affect secondary metabolomes and phytohormone levels in youngest, non-damaged cotton leaves (distal leaves). Furthermore, bioassays with caterpillars were conducted to assess their performance on distal leaves of plants infested with different herbivores. Caterpillars, and to a lesser degree spider mites, led to a systemic induction of terpenoids with negative consequences for caterpillar performance in the bioassays. Both herbivores reduced levels of various nutrients and potentially antioxidative compounds. Caterpillar damage increased levels of jasmonoyl-L-isoleucine and abscisic acid (ABA), whereas spider mite infestation had no effect on phytohormone levels. Aphid and whitefly infestation did not systemically affect secondary metabolites. Aphids decreased salicylic acid levels while whitefly-infested plants contained increased ABA levels. Neither aphid nor whitefly infestation affected caterpillar performance. In general, feeding mode of a herbivore can affect systemically induced changes in phytochemistry and plant-mediated indirect interactions even though the two phloem-feeding herbivores triggered different phytohormonal responses. The observed reduction of nutrients and potentially antioxidative compounds upon caterpillar and spider mite herbivory underlines the importance of further elucidating the role of resource sequestration as a potential systemic defensive response following herbivory by chewers and cell-content feeding herbivores.  相似文献   

4.
Microarray analysis was used to measure the impact of herbivory by Helicoverpa zea, (corn earworm caterpillar) on wild-type and transgenic tomato, Solanum lycopersicum, plants that over-express peroxidase. Caterpillar herbivory had by far the greatest affect on gene expression, but the peroxidase transgene also altered the expression of a substantial number of tomato genes. Particularly high peroxidase activity resulted in the up-regulation of genes encoding proteinase inhibitors, pathogenesis-related (PR) proteins, as well as proteins associated with iron and calcium transport, and flowering. In a separate experiment conducted under similar conditions, real-time quantitative polymerase chain reaction (qPCR) analysis confirmed our microarray results for many genes. There was some indication that multiple regulatory interactions occurred due to the interaction of the different treatments. While herbivory had the greatest impact on tomato gene expression, our results suggest that levels of expression of a multifunctional gene, such as peroxidase and its products, can influence other gene expression systems distinct from conventional signaling pathways, further indicating the complexity of plant defensive responses to insects.  相似文献   

5.
Induced plant responses to attack by chewing insects have been intensively studied, but little is known about plant responses to nonchewing insects or to attack by multiple herbivores with different feeding habits. We examined volatile emissions by tobacco, Nicotiana tabacum, in response to feeding by the piercing–sucking insect western flower thrips (WFT), Frankliniella occidentalis, the chewing herbivore Heliothis virescens, and both herbivores simultaneously. In addition, we examined the effects of herbivore-induced plant defenses on host-plant selection by WFT. Plants responded to thrips feeding by consistently releasing five compounds. Simultaneous feeding by WFT and H. virescens elicited the same 11 compounds emitted in response to caterpillar feeding alone; however, two compounds, α-humulene and caryophyllene oxide, were produced in greater amounts in response to simultaneous herbivory. In choice tests, thrips consistently preferred uninduced plants over all other treatments and preferred plants damaged by caterpillars and those treated with caterpillar saliva over those treated with caterpillar regurgitant. The results are consistent with a previous finding that caterpillar regurgitant induces the release of significantly more volatile nicotine than plants damaged by caterpillars or plants treated with caterpillar saliva. A repellent effect of nicotine on WFT was confirmed by encircling unwounded plants with septa releasing volatile nicotine. Our results provide the first direct evidence that thrips feeding induces volatile responses and indicates that simultaneous herbivory by insects with different feeding habits can alter volatile emissions. In addition, the findings demonstrate that induced plant responses influence host-plant selection by WFT and suggest that the induction of volatile nicotine may play a role in this process.  相似文献   

6.
Induced changes in primary metabolism are important plant responses to herbivory, providing energy and metabolic precursors for defense compounds. Metabolic shifts also can lead to reallocation of leaf resources to storage tissues, thus increasing a plant’s tolerance. We characterized whole-plant metabolic responses of tomato (Solanum lycopersicum) 24 h after leaf herbivory by two caterpillars (the generalist Helicoverpa zea and the specialist Manduca sexta) by using GC-MS. We measured 56 primary metabolites across the leaves, stems, roots, and apex, comparing herbivore-attacked plants to undamaged plants and mechanically damaged plants. Induced metabolic change, in terms of magnitude and number of individual concentration changes, was stronger in the apex and root tissues than in undamaged leaflets of damaged leaves, indicating rapid and significant whole-plant responses to damage. Helicoverpa zea altered many more metabolites than M. sexta across most tissues, suggesting an enhanced plant response to H. zea herbivory. Helicoverpa zea herbivory strongly affected concentrations of defense-related metabolites (simple phenolics and precursor amino acids), while M. sexta altered metabolites associated with carbon and nitrogen transport. We conclude that herbivory induces many systemic primary metabolic changes in tomato, and that changes often are specific to a single tissue or type of herbivore. The potential implications of primary metabolic changes are discussed in relation to resistance and tolerance.  相似文献   

7.
Salivary glands are involved in saliva secretion that ensures proper oral health. Aquaporins are expressed in salivary glands and play a major role in saliva secretion. This review will provide an overview of the salivary gland morphology and physiology of saliva secretion, and focus on the expression, subcellular localization and role of aquaporins under physiological and pathophysiological conditions, as well as clinical applications involving aquaporins. This review is highlighting expression and localization of aquaporins in human, rat and mouse, the most studied species and is pointing out possible difference between major salivary glands, i.e., parotid, submandibular and sublingual glands.  相似文献   

8.
Induction of plant defense in response to herbivory includes the emission of synomones that attract the natural enemies of herbivores. We investigated whether mechanical damage to Brussels sprouts leaves (Brassica oleracea var.gemmifera) is sufficient to obtain attraction of the parasitoidCotesia glomerata or whether feeding byPieris brassicae caterpillars elicits the release of synomones not produced by mechanically damaged leaves. The response of the parasitoidCotesia glomerata to different types of simulated herbivory was observed. Flight-chamber dual-choice tests showed that mechanically damaged cabbage leaves were less attractive than herbivore-damaged leaves and mechanically damaged leaves treated with larval regurgitant. Chemical analysis of the headspace of undamaged, artificially damaged, caterpillar-infested, and caterpillar regurgitant-treated leaves showed that the plant responds to damage with an increased release of volatiles. Greenleaf volatiles and several terpenoids are the major components of cabbage leaf headspace. Terpenoids are emitted in analogous amounts in all treatments, including undamaged leaves. On the other hand, if the plant is infested by caterpillars or if caterpillar regurgitant is applied to damaged leaves, the emission of green-leaf volatiles is highly enhanced. Our data are in contrast with the induction of more specific synomones in other plant species, such as Lima bean and corn.  相似文献   

9.
The subepidermal pigment glands of cotton accumulate a variety of terpenoid products, including monoterpenes, sesquiterpenes, and terpenoid aldehydes that can act as feeding deterrents against a number of insect herbivore species. We compared the effect of herbivory by Spodoptera littoralis caterpillars, mechanical damage by a fabric pattern wheel, and the application of jasmonic acid on levels of the major representatives of the three structural classes of terpenoids in the leaf foliage of 4-week-old Gossypium hirsutum plants. Terpenoid levels increased successively from control to mechanical damage, herbivory, and jasmonic acid treatments, with E-β-ocimene and heliocide H1 and H4 showing the highest increases, up to 15-fold. Herbivory or mechanical damage to older leaves led to terpenoid increases in younger leaves. Leaf-by-leaf analysis of terpenes and gland density revealed that higher levels of terpenoids were achieved by two mechanisms: (1) increased filling of existing glands with terpenoids and (2) the production of additional glands, which were found to be dependent on damage intensity. As the relative response of individual terpenoids did not differ substantially among herbivore, mechanical damage, and jasmonic acid treatments, the induction of terpenoids in cotton foliage appears to represent a non-specific wound response mediated by jasmonic acid. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
The cDNA sequence of a salivary lysozyme in Helicoverpa zea (Lepidoptera: Noctuidae) was determined. The full-length cDNA is 1,032 bp, and it encodes a protein of 142 amino acids. This lysozyme has 90% identity with Heliothis virescens lysozyme and 76% identity with Manduca sexta lysozyme. There is a signal peptide of 20 amino acids at the N-terminus. The mature protein is about 14.4 kDa without the signal peptide. The pI value is greater than 9.5 as determined by isoelectric focusing. From genomic DNA, two introns and three exons were within the open reading frame (ORF). Southern blot analysis indicated that it is a single-copy gene. A time-course study revealed that the H. zea lysozyme gene was differentially expressed in the labial glands during the development of fifth-instar larvae, with the peak level of lysozyme mRNA being detected on day 1. Dot blot analysis showed different levels of H. zea lysozyme expression when the caterpillars fed on different plants. Further, the H. zea lysozyme could be detected with antibodies raised against the M. sexta lysozyme, and it was one of the most abundant secreted proteins in saliva collected directly from the caterpillars spinneret. The potential role of the lysozyme on host plants in mediating susceptibility to bacterial disease is discussed in the context of tritrophic interactions.  相似文献   

12.
The effect of volatiles related to feeding activity of nonprey caterpillars, Spodoptera exigua, on the olfactory response of the predatory mites Phytoseiulus persimilis was examined in a Y-tube olfactometer. At a low caterpillar density (20 caterpillars on 10 Lima bean leaves), the predators were significantly more attracted to volatiles from infested leaves on which the caterpillars and their products were present or from infested leaves from which the caterpillars and their products had been removed when compared to volatiles from uninfested leaves. The predators, however, significantly avoided odors from 20 caterpillars and their products (mainly feces) removed from bean leaves. In contrast, at a higher caterpillar density (100 caterpillars on 10 Lima bean leaves), the predators avoided volatiles from caterpillar-infested bean leaves. Volatiles from infested leaves from which the caterpillars and their products had been removed were not preferred over volatiles from uninfested leaves. Volatiles from feces collected from 100 caterpillars were strongly avoided by the predators, while the behavior of the predatory mites was not affected by volatiles from 100 caterpillars removed from a plant. The data show that carnivorous arthropods may avoid nonprofitable herbivores. This avoidance seems to result from an interference of volatiles from herbivore products with the attraction to herbivore-induced plant volatiles.  相似文献   

13.
MAIZE GENES INDUCED BY HERBIVORY AND VOLICITIN   总被引:6,自引:0,他引:6  
  相似文献   

14.
Plant volatiles influence host selection of herbivorous insects. Since volatiles often vary in space and time, herbivores (especially polyphagous ones) may be able to use these compounds as cues to track variation in host plant quality based on their innate abilities and previous experience. We investigated the behavioral response of naïve (fed on artificial diet) and experienced (fed on poplar) gypsy moth (Lymantria dispar) caterpillars, a polyphagous species, towards constitutive and herbivore-induced black poplar (Populus nigra) volatiles at different stages of herbivore attack. In Y-tube olfactometer assays, both naïve and experienced caterpillars were attracted to constitutive volatiles and volatiles released after short-term herbivory (up to 6 hr). Naïve caterpillars also were attracted to volatiles released after longer-term herbivory (24–30 hr), but experienced caterpillars preferred the odor of undamaged foliage. A multivariate statistical analysis comparing the volatile emission of undamaged plants vs. plants after short and longer-term herbivory, suggested various compounds as being responsible for distinguishing between the odors of these plants. Ten compounds were selected for individual testing of caterpillar behavioral responses in a four-arm olfactometer. Naïve caterpillars spent more time in arms containing (Z)-3-hexenol and (Z)-3-hexenyl acetate than in solvent permeated arms, while avoiding benzyl cyanide and salicyl aldehyde. Experienced caterpillars avoided benzyl cyanide and preferred (Z)-3-hexenyl acetate and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) over solvent. Only responses to DMNT were significantly different when comparing experienced and naïve caterpillars. The results show that gypsy moth caterpillars display an innate behavioral response towards constitutive and herbivore-induced plant volatiles, but also that larval behavior is plastic and can be modulated by previous feeding experience.  相似文献   

15.

Several herbivorous caterpillars contain effectors in their oral secretions that alter the emission of green leaf volatiles (GLVs) produced by the plants upon which the caterpillars are feeding. These effectors include an isomerase, a fatty acid dehydratase (FHD), and a heat-stable hexenal trapping (HALT) molecule. GLVs serve as signaling compounds in plant-insect interactions and inter-and intra-plant communication. However, it is not known whether these GLV-altering effectors are common among herbivorous caterpillars, or the evolutionary context of these effectors in relation to GLV emission by host plants in response to feeding damage. Here, we examined the distribution and activity of the isomerase, FHD, and HALT effectors across 10 species spanning 7 lepidopteran families. Six of the 10 species possessed all three effectors in their oral secretions. Activity from the HALT and FHD effectors was observed in all examined caterpillar species, while activity from the isomerase effector varied in some species and was absent in others. There was no discernable pattern in effector activity based on evolutionary divergence, since individual species within a family did not possess similar mechanisms to alter GLV emission. These data, demonstrating the GLV-altering effectors acting at different steps in the GLV biosynthetic pathway and present in the examined caterpillar species at different combinations with different activities, highlight the importance of these effectors in changing the emission of these compounds during caterpillar herbivory. Understanding the prevalence and roles of GLV-altering effectors and GLV emission itself will open new research areas in the dynamics of plant-insect interactions.

  相似文献   

16.
Do Caterpillars Secrete “Oral Secretions”?   总被引:1,自引:0,他引:1  
The oral secretions or regurgitant of caterpillars contain potent elicitors of plant induced responses. These elicitors are recognized by host plants to differentiate between simple mechanical injury and the presence of herbivores. In some cases, this level of recognition is highly specific. Despite the in-depth chemical characterization of these elicitors, little is known about the amounts delivered in regurgitant during feeding. In this study, we use a fluorescent dye to label regurgitant in order to visualize caterpillar regurgitation during feeding. The procedure is highly sensitive and allows us to visualize nanoliter amounts of regurgitant. We examined the propensity of larval Helicoverpa zea, Heliothis virescens, Spodoptera exigua, Spodoptera frugiperda, and Manduca sexta to regurgitate on various host plants. These species were selected because they have been among the most intensely studied in terms of elicitors. Our results indicate that most larvae did not regurgitate following a brief feeding bout (∼10 min) during which they ate ca. 0.40 cm2 of leaf. When larvae did regurgitate, it was typically less than 10 nl. This is several orders of magnitude less than is typically used in most studies on oral secretions. The frequency of regurgitation appears to vary depending upon the host plant. Larval H. zea are less likely to regurgitate when feeding on tomato leaves compared to corn mid-whorl tissue. Our results have importance in understanding the role of oral secretions in plant recognition of herbivory. Because caterpillars did not routinely regurgitate during feeding, it is likely that they avoid the elicitation of some plant defensive responses during most feeding bouts.  相似文献   

17.
Foragers of many species of stingless bees guide their nestmates to food sources by means of scent trails deposited on solid substrates between the food and the nest. The corresponding trail pheromones are generally believed to be produced in the mandibular glands, although definitive experimental proof has never been provided. We tested the trail following behavior of recruits of Trigona recursa in field experiments with artificial scent trails branching off from natural scent trails of this stingless bee. First-time recruits (newcomers) did not follow these trails when they were laid with pure solvent or mandibular gland extract. However, they did follow trails made with labial gland extract. Chemical analyses of labial gland secretions revealed that hexyl decanoate was the dominant component (72.4 ± 1.9% of all volatiles). Newcomers were significantly attracted to artificial trails made with synthetic hexyl decanoate, demonstrating its key function in eliciting scent-following behavior. According to our experiments with T. recursa, the trail pheromone is produced in the labial glands and not in the mandibular glands. Hexyl decanoate is the first component of a trail pheromone identified and proved to be behaviorally active in stingless bees.  相似文献   

18.
The paired labial glands of the French subterranean termite Reticulitermes santonensis Feytaud are located in the thorax. In the head, the glandular ducts join with those of the water sacs. In feeding choice tests with two semicircles of moist filter paper as food, workers of R. santonensis preferred the semicircle treated with labial gland extract compared to the semicircle treated with water (control). The labial gland secretion carries a signal that stimulates gnawing and feeding by termite workers during food exploitation. The extract of the labial gland even elicited feeding behavior when applied without food (on glass plates). The content of the water sacs was not effective as a feeding stimulus and neither were different body parts except for the fat-body. Water sacs are thus not a reservoir for the labial gland secretion, but their contents may serve as a solvent or carrier for the phagostimulant signal. The signal is highly polar, heat-resistant, nonvolatile, and thus very persistent. There is evidence that the signal from the labial gland is not species specific. Instead, it might be part of a general strategy by termites to exploit food sources.  相似文献   

19.
Herbivory induces changes in plants that influence the associated insect community. The present study addresses the potential trade-off between plant phytochemical responses to insect herbivory and interactions with pollinators. We used a multidisciplinary approach and have combined field and greenhouse experiments to investigate effects of herbivory in plant volatile emission, nectar production, and pollinator behavior, when Pieris brassicae caterpillars were allowed to feed only on the leaves of Brassica nigra plants. Interestingly, volatile emission by flowers changed upon feeding by herbivores on the leaves, whereas, remarkably, volatile emission by leaves did not significantly differ between infested and non-infested flowering plants. The frequency of flower visits by pollinators was generally not influenced by herbivory, but the duration of visits by honeybees and butterflies was negatively affected by herbivore damage to leaves. Shorter duration of pollinator visits could be beneficial for a plant, because it sustains pollen transfer between flowers while reducing nectar consumption per visit. Thus, no trade-off between herbivore-induced plant responses and pollination was evident. The effects of herbivore-induced plant responses on pollinator behavior underpin the importance of including ecological factors, such as herbivore infestation, in studies of the ecology of plant pollination.  相似文献   

20.
Aging-related salivary dysfunction commonly induces the poor oral health, including decreased saliva flow and dental caries. Although the clinical significance of the salivary glands is well-known, the complex metabolic pathways contributing to the aging-dysfunction process are only beginning to be uncovered. Here, we provide a comprehensive overview of the metabolic changes in aging-mediated salivary gland dysfunction as a key aspect of oral physiology. Several metabolic neuropeptides or hormones are involved in causing or contributing to salivary gland dysfunction, including hyposalivation and age-related diseases. Thus, aging-related metabolism holds promise for early diagnosis, increased choice of therapy and the identification of new metabolic pathways that could potentially be targeted in salivary gland dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号