共查询到20条相似文献,搜索用时 9 毫秒
1.
High-pressure chromatography on Spheron 300 BTD and Spheron 1000 was used to separate tobacco mosaic virus from other components of an extract from infected tobacco leaves, including F1, a protein having a molecular weight of 0.58 X 10(6). Comparative experiments have shown that the virus is not adsorbed by the carrier and is eluted in the free volume of the column; the virus is free from contamination by vegetable-juice components and is regained quantitatively. The virus can be separated partially, but distinctly, from the F1 protein by using a column of microgranular Spheron 300. Polyhydric phenols in the vegetable extract are adsorbed on Spheron and eluted from the column after a delay. 相似文献
2.
HP Mock W Heller A Molina B Neubohn H Sandermann B Grimm 《Canadian Metallurgical Quarterly》1999,274(7):4231-4238
Transgenic tobacco plants with reduced activity of either uroporphyrinogen decarboxylase or coproporphyrinogen oxidase, two enzymes of the tetrapyrrole biosynthetic pathway, are characterized by the accumulation of photosensitizing tetrapyrrole intermediates, antioxidative responses, and necrotic leaf lesions. In this study we report on cellular responses in uroporphyrinogen decarboxylase and coproporphyrinogen oxidase antisense plants, normally associated with pathogen defense. These plants accumulate the highly fluorescent coumarin scopolin in their leaves. They also display increased pathogenesis-related protein expression and higher levels of free and conjugated salicylic acid. Upon tobacco mosaic virus inoculation, the plants with leaf lesions and high levels of PR-1 mRNA expression show reduced accumulation of virus RNA relative to wild-type controls. This result is indicative of an increased resistance to tobacco mosaic virus. We conclude that porphyrinogenesis as a result of deregulated tetrapyrrole synthesis induces a set of defense responses that resemble the hypersensitive reaction observed after pathogen attack. 相似文献
3.
The coat protein of tobacco mosaic virus is known to form three different classes of aggregate, depending on environmental conditions, namely helical, disk, and A-protein. Among the disk aggregates, there are four-layer, six-layer, and long stacks, which can be obtained by varying the ionic strength and temperature conditions during the association process. The four-layer aggregate has been crystallized, and its structure solved to atomic resolution. The stacked disk aggregate had been presumed to be built of a polar two-layer disk related to the crystalline A and B rings. A study using monoclonal antibodies specific to the bottom surface of TMV protein demonstrated that the stacked disk aggregate is bipolar, and suggested that the repeating two-layer unit might be similar to the dihedrally symmetrical A-ring pair in the disk crystal. In this paper we present a three-dimensional reconstruction of the stacked disk aggregate obtained by electron microscopy of ice-embedded samples. After modeling of the structure, we found the ring pairs to have the same quaternary structure as the A-ring pair of the four-layer aggregate. The resolution achieved in the image processing of the electron micrographs is on the order of 9 A in the meridional direction and 12 A in the equatorial. The identification of the structure of the stacked disk with the A-ring pair of the disk crystal provides an explanation of the observation that the axial periodicity of the disk pair, which is approximately 53 A when fully hydrated, can shrink to approximately 43 A in the dry state. 相似文献
4.
SBMV-S is a resistance-breaking mutant of an Arkansas isolate of the bean strain of southern bean mosaic virus (SBMV-BARK) that is able to move systemically in Phaseolus vulgaris cvs. Pinto and Great Northern, whereas the wild-type SBMV-BARK causes local necrotic lesions and is restricted to the inoculated leaves of these hosts. Sequence analysis of the 4136 nucleotide genomes of SBMV-BARK and SBMV-S revealed seven nucleotide differences, but only four deduced amino acid changes. A single amino acid change occurred in the C-terminal region of the putative RNA-dependent RNA polymerase and three differences were identified in the N-terminal portion of the virus coat protein. SBMV-BARK and SBMV-S were compared with other sobemoviruses and were found to contain a high level of nucleotide sequence identity (91.3%) to SBMV-B. Unlike SBMV-B however, SBMV-BARK and SBMV-S contained four putative overlapping open reading frames, making them more similar in genome organization to the cowpea strain, SBMV-C. The possibility exists that mutations or even errors, that resulted in mis-identification of open reading frames, occurred in previously published information on nucleotide sequence and genomic organization for SBMV-B. 相似文献
5.
YF Drygin OA Bordunova MO Gallyamov IV Yaminsky 《Canadian Metallurgical Quarterly》1998,425(2):217-221
The majority of early-onset familial Alzheimer's disease (FAD) is associated with mutations in the presenilin-1 (PS1) gene. We describe a novel Polish PS1 mutation of Pro117Leu, associated with the earliest average age of onset and death so far reported in a PS-linked, FAD kindred. Human kidney 293 and mouse neuroblastoma N2a cells were stably transfected with wild-type and PS1 P117L. There was a significant increase in the amyloid beta42/40 ratio in the N2a P117L PS1 transfected cells compared with N2a transfected with wild-type PS1. What role PS has in the pathogenesis of AD remains to be determined, however, the severity of the clinical picture associated with this PS1 mutation stresses the importance of presenilin. 相似文献
6.
Salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK), two distinct members of the mitogen-activated protein (MAP) kinase family, are activated in tobacco resisting infection by tobacco mosaic virus (TMV). WIPK activation by TMV depends on the disease-resistance gene N because infection of susceptible tobacco not carrying the N gene failed to activate WIPK. Activation of WIPK required not only posttranslational phosphorylation but also a preceding rise in its mRNA and de novo synthesis of WIPK protein. The induction by TMV of WIPK mRNA and protein also occurred systemically. Its activation at the mRNA, protein, and enzyme levels was independent of salicylic acid. The regulation of WIPK at multiple levels by an N gene-mediated signal(s) suggests that this MAP kinase may be an important component upstream of salicylic acid in the signal-transduction pathway(s) leading to local and systemic resistance to TMV. 相似文献
7.
8.
DB Morris 《Canadian Metallurgical Quarterly》1998,24(1):41-2, 47
Scientific expertise in the management of diabetes was an important factor in overcoming physician resistance to the education program. Nurses have expertise, and their expertise must be acknowledged for them to be viewed as leaders. Not only are nurses responsible for sharing their expertise with other nurses, it is equally important for them to share their expertise with the physicians, who may appreciate receiving any information that can help them improve their patients' outcomes. The components that are essential for success in pioneering a new program are good listening skills, a willingness to cooperate, self-confidence, scientific knowledge, vigilance, determination, and a clear vision. Patient outcomes will improve when nurses use their scientific knowledge base and leadership skills through patient-centered nursing practice, planned change strategies, and advanced practice nursing. 相似文献
9.
Alterations in the genomic position of the tobacco mosaic virus (TMV) genes encoding the 30-kDa cell-to-cell movement protein or the coat protein greatly affected their expression. Higher production of 30-kDa protein was correlated with increased proximity of the gene to the viral 3' terminus. A mutant placing the 30-kDa open reading frame 207 nucleotides nearer the 3' terminus produced at least 4 times the wild-type TMV 30-kDa protein level, while a mutant placing the 30-kDa open reading frame 470 nucleotides closer to the 3' terminus produced at least 8 times the wild-type TMV 30-kDa protein level. Increases in 30-kDa protein production were not correlated with the subgenomic mRNA promoter (SGP) controlling the 30-kDa gene, since mutants with either the native 30-kDa SGP or the coat protein SGP in front of the 30-kDa gene produced similar levels of 30-kDa protein. Lack of coat protein did not affect 30-kDa protein expression, since a mutant with the coat protein start codon removed did not produce increased amounts of 30-kDa protein. Effects of gene positioning on coat protein expression were examined by using a mutant containing two different tandemly positioned tobamovirus (TMV and Odontoglossum ringspot virus) coat protein genes. Only coat protein expressed from the gene positioned nearest the 3' viral terminus was detected. Analysis of 30-kDa and coat protein subgenomic mRNAs revealed no proportional increase in the levels of mRNA relative to the observed levels of 30-kDa and coat proteins. This suggests that a translational mechanism is primarily responsible for the observed effect of genomic position on expression of 30-kDa movement and coat protein genes. 相似文献
10.
Tobacco mosaic virus (TMV) particles have been shown to undergo bidirectional disassembly when they are introduced into host cells. Approximately three-quarters of the genomic RNA (i.e., the 126-kDa and 183-kDa protein ORFs) is first uncoated in the 5'-to-3' direction and the process is then completed by removal of coat protein molecules in the 3'-to-5' direction. An effort was made to determine whether the 126-kDa protein or the 183-kDa protein, both of which are involved in replication of the viral RNA, is required for the second part of the disassembly reaction. It was shown that progeny negative-strand viral RNA begins to be produced in inoculated cells at about the same time that 3'-to-5' disassembly is initiated thus suggesting that the two processes may be coupled. Particles containing mutant forms of the viral RNA in which large sections of the 126-kDa and 183-kDa protein ORFs were missing were not disassembled in the 3'-to-5' direction when they were introduced into cells. However, they were disassembled when the inoculum contained purified TMV RNA from which, presumably, the two functional proteins could be translated Particles containing mutants of the RNA from which a few codons had been deleted in or near conserved regions in the 126-kDa protein ORF also did not undergo 3'-to-5' disassembly unless mixed with wild type viral RNA prior to inoculation. These results suggest that the 126-kDa and/or 183-kDa protein plays a role in the completion of disassembly of TMV particles at the onset of the infection process. 相似文献
11.
BY Chang CR Huang SD Yeh JK Chiang LM Hung HY Hu 《Canadian Metallurgical Quarterly》1994,138(1-2):17-25
The sequence of the 3' 1184 nucleotides of tobacco vein-banding mosaic virus (TVBMV) genome has been determined. It contains a single open reading frame which encompasses the whole of the coat protein of TVBMV. The sequence of the first 20 amino acids at the N-terminal region of the coat protein has also been determined chemically to be GDDQTVDAGKNVQSNQKQRN. The sequence matches the translation product of the open reading frame starting with amino acid-271; a glycine residue. Thus the coat protein of TVBMV has a calculated M(r) of 30,210. The 3' non-coding region of TVBMV is 185 nucleotides in length. Sequence alignment of the coat proteins or the 3' non-coding regions from TVBMV and other reported potyviruses indicated that TVBMV is a separate species of the potyvirus genus. 相似文献
12.
13.
14.
Plasmodesmata are cytoplasmic bridges between plant cells thought to generally allow only the passage of small molecules and metabolites. However, large structures such as plant viruses also move from cell to cell via plasmodesmata. In tobacco mosaic virus (TMV) infection a viral movement protein (TMV-MP) mediates viral spread. Here, a microinjection assay is used to monitor the dynamics of TMV-MP function directly in wild-type plants. The results indicate that TMV-MP interacts with an endogenous plant pathway increasing plasmodesmal size exclusion limit to permit passage of 20-kDa dextrans. Furthermore, TMV-MP influences plasmodesmal size exclusion limit several cells distant from the injection site, indicating either that TMV-MP itself crosses plasmodesmata or that TMV-MP induces a diffusable signal capable of dilating microchannels of plasmodesmata. The region of TMV-MP responsible for increasing plasmodesmal size exclusion limit was mapped to the carboxyl-terminal part of the 268-amino acid residue protein between amino acid residues 126 and 224. 相似文献
15.
A sucrose density gradient-purified, membrane-bound tobacco mosaic virus (tomato strain L) (TMV-L) RNA polymerase containing endogenous RNA template was efficiently solubilized with sodium taurodeoxycholate. Solubilization resulted in an increase in the synthesis of positive-strand, 6.4-kb genome-length single-stranded RNA (ssRNA) and a decrease in the production of 6.4-kbp double-stranded RNA (dsRNA) to levels close to the limits of detection. The solubilized TMV-L RNA polymerase was purified by chromatography on columns of DEAE-Bio-Gel and High Q. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining showed that purified RNA polymerase preparations consistently contained proteins with molecular masses of 183, 126, 56, 54, and 50 kDa, which were not found in equivalent material from healthy plants. Western blotting showed that the two largest of these proteins are the TMV-L-encoded 183- and 126-kDa replication proteins and that the 56-kDa protein is related to the 54.6-kDa GCD10 protein, the RNA-binding subunit of yeast eIF-3. The 126-, 183-, and 56-kDa proteins were coimmunoaffinity selected by antibodies against the TMV-L 126-kDa protein and by antibodies against the GCD10 protein. Antibody-linked polymerase assays showed that active TMV-L RNA polymerase bound to antibodies against the TMV-L 126-kDa protein and to antibodies against the GCD10 protein. Synthesis of genome-length ssRNA and dsRNA by a template-dependent, membrane-bound RNA polymerase was inhibited by antibodies against the GCD10 protein, and this inhibition was reversed by prior addition of GCD10 protein. 相似文献
16.
A Callaway W Liu V Andrianov L Stenzler J Zhao S Wettlaufer P Jayakumar SH Howell 《Canadian Metallurgical Quarterly》1996,9(9):810-818
Two Arabidopsis ecotypes are resistant to systemic infection by cauliflower mosaic virus (CaMV), a plant para-retrovirus. Arabidopsis ecotype Enkheim-2 (En-2) is highly resistant to CaMV infection while Bla-14 is more weakly resistant. CaMV resistance in En-2 can be largely attributed to the action of a single semidominant gene called cauliflower mosaic virus resistance1 (CAR1), located at a locus on chromosome 1. Resistance in Bla-14 is tightly linked to CAR1 and may be due to a weak allele at the same locus or another gene in a gene cluster. A quantitative polymerase chain reaction assay in conjunction with replication- and movement-incompetent viral mutants was used to determine whether virus replication or movement is affected in the resistant ecotypes. The pattern of accumulation of the wild-type virus in the resistant ecotype, En-2, was similar to that of a movement-incompetent CaMV mutant, suggesting that CAR1 interferes with or fails to support CaMV movement. CaMV-inoculated En-2 plants do not show visible signs of a hypersensitive response. However, indicators of an induced defense response do appear in CaMV-infected En-2 plants, such as the activation of pathogenesis-related protein gene expression and the production of camalexin, an Arabidopsis phytoalexin. Defense responses induced chemically or by mutation in the susceptible ecotypes delayed and reduced the severity of a CaMV infection. These findings suggest that CAR1 acts either in the susceptible ecotype to support virus movement or in the resistant ecotype to signal a defense response. 相似文献
17.
18.
M Figlerowicz PD Nagy N Tang CC Kao JJ Bujarski 《Canadian Metallurgical Quarterly》1998,72(11):9192-9200
Previously, we have observed that mutations in proteins 1a and 2a, the two virally encoded components of the brome mosaic virus (BMV) replicase, can affect the frequency of recombination and the locations of RNA recombination sites (P. D. Nagy, A. Dzianott, P. Ahlquist, and J. J. Bujarski, J. Virol. 69:2547-2556, 1995; M. Figlerowicz, P. D. Nagy, and J. J. Bujarski, Proc. Natl. Acad. Sci. USA 94:2073-2078, 1997). Also, it was found before that the N-terminal domain of 2a, the putative RNA polymerase protein, participates in the interactions between 1a and 2a (C. C. Kao, R. Quadt, R. P. Hershberger, and P. Ahlquist, J. Virol. 66:6322-6329, 1992; E. O'Reilly, J. Paul, and C. C. Kao, J. Virol. 71:7526-7532, 1997). In this work, we examine how mutations within the N terminus of 2a influence RNA recombination in BMV. Because of the likely electrostatic character of 1a-2a interactions, five 2a mutants, MF1 to MF5, were generated by replacing clusters of acidic amino acids with their neutral counterparts. MF2 and MF5 retained nearly wild-type levels of 1a-2a interaction and were infectious in Chenopodium quinoa. However, compared to that in wild-type virus, the frequency of nonhomologous recombination in both MF2 and MF5 was markedly decreased. Only in MF2 was the frequency of homologous recombination reduced and the occurrence of imprecise homologous recombination increased. In MF5 there was also a 3' shift in the positions of homologous crossovers. The observed effects of MF2 and MF5 reveal that the 2a N-terminal domain participates in different ways in homologous and in nonhomologous BMV RNA recombination. This work maps specific locations within the N terminus involved in 1a-2a interaction and in recombination and further suggests that the mechanisms of the two types of crossovers in BMV are different. 相似文献
19.