首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
《分离科学与技术》2012,47(10):1385-1394
Carbon dioxide capture and storage (CCS) has been propounded as an important issue in greenhouse gas emissions control. In this connection, in the present article, the advantages of using polymeric membrane for separation of carbon dioxide from CO2/N2 streams have been discussed. A novel composition for fabrication of a blend membrane prepared from acrylonitrile-butadiene-styrene (ABS) terpolymer and polyethylene glycol (PEG) has been suggested. The influence of PEG molecular weight (in the range of 400 to 20000) on membrane characteristics and gas separation performance, the effect of PEG content (0–30 wt%) on gas transport properties, and the effect of feed side pressure (ranging from 1 to 8 bar) on CO2 permeability have been studied. The results show that CO2 permeability increases from 5.22 Barrer for neat ABS to 9.76 Barrer for ABS/PEG20000 (10 wt%) while the corresponding CO2/N2 selectivity increases from 25.97 to 44.36. Furthermore, it is concluded that this novel membrane composition has the potential to be considered as a commercial membrane.  相似文献   

2.
Liling Zhang  Jianwen Jiang 《Polymer》2010,51(19):4439-11239
Experimental measurements and fully atomistic simulations are carried out to examine the CO2-induced plasticization of a polyimide membrane synthesized from 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and 4,4′-oxydianiline (ODA). With increasing feed pressure, the permeability of CO2 in the 6FDA-ODA membrane initially decreases, crosses a minimum, and then increases. The plasticization pressure is estimated to be at approximately 8 atm. The radial distribution functions between CO2 and polyimide atoms reveal that the imide groups are the preferential sorption sites, followed by the ether and CF3 groups. The experimental and simulated sorption isotherms of CO2 are in fairly good agreement. At low loadings, CO2 molecules are largely trapped with small mobility. With increasing loading, the polyimide membrane exhibits a depressed glass transition temperature, a dilated volume and an increased fractional free volume. In addition, larger and more interconnected voids appear and the mean radius of voids increases from 2.5 to 3.3 Å with increasing CO2 loading. Consequently, the mobility of both CO2 molecules and polymer chains is enhanced. Based on molecular displacement, the percentages of three types of motions (jumping, trapped, and continuous) are estimated for CO2 in the membrane. The continuous motion contributes predominantly to CO2 diffusion. At a high loading, the ether groups in the polyimide chains exhibit a significant effect on plasticization. It is therefore suggested that the plasticization could be suppressed by substituting the ether groups. The microscopic information of this study is particularly useful for the quantitative understanding of plasticization.  相似文献   

3.
Using a manometric experimental setup, high-pressure sorption measurements with CH4 and CO2 were performed on three Chinese coal samples of different rank (VRr = 0.53%, 1.20%, and 3.86%). The experiments were conducted at 35, 45, and 55 °C with pressures up to 25 MPa on the 0.354-1 mm particle fraction in the dry state. The objective of this study was to explore the accuracy and reproducibility of the manometric method in the pressure and temperature range relevant for potential coalbed methane (CBM) and CO2-enhanced CBM (CO2-ECBM) activities (P > 8 MPa, T > 35 °C). Maximum experimental errors were estimated using the Gauss error propagation theorem, and reproducibility tests of the high-pressure sorption measurements for CH4 and CO2 were performed. Further, the experimental data presented here was used to explicitly study the CO2 sorption behaviour of Chinese coal samples in the elevated pressure range (up to 25 MPa) and the effects of temperature on supercritical CO2 sorption isotherms.The experiments provided characteristic excess sorption isotherms which, in the case of CO2 exhibit a maximum around the critical pressure and then decline and level out towards a constant value. The results of these manometric tests are consistent with those of previous gravimetric sorption studies and corroborate a crossover of the 35, 45, and 55 °C CO2 excess sorption isotherms in the high-pressure range. The measurement range could be extended, however, to significantly higher pressures. The excess sorption isotherms tend to converge, indicating that the temperature dependence of CO2 excess sorption on coals at high-pressures (>20 MPa) becomes marginal. Further, all CO2 high-pressure isotherms measured in this study were approximated by a three-parameter excess sorption function with special consideration of the density ratio of the “free” phase and the sorbed phase. This function provided a good representation of the experimental data.The maximum excess sorption capacity of the three coal samples for methane ranged from 0.8 to 1.6 mmol/g (dry, ash-free) and increased from medium volatile bituminous to subbituminous to anthracite. The medium volatile bituminous coal also exhibited the lowest overall excess sorption capacity for CO2. However, the subbituminous coal was found to have the highest CO2 sorption capacity of the three samples. The mass fraction of adsorbed substance as a function of time recorded during the first pressure step was used to analyze the kinetics of CH4 and CO2 sorption on the coal samples. CO2 sorption proceeds more rapidly than CH4 sorption on the anthracite and the medium volatile bituminous coal. For the subbituminous coal, methane sorption is initially faster, but during the final stage of the measurement CO2 sorption approaches the equilibrium value more rapidly than methane.  相似文献   

4.
The processes of gas sorption and permeation in a polymer membrane at temperatures above and below the glass-transition point were examined using poly-4-methylpentene-1 (glass-transition temperature reported to be 40°C) as a membrane material. The permeabilities to O2 and N2 were independent of applied gas pressure at every temperature; the mean permeability coefficient to CO2 increased with increasing gas pressure. The logarithm of the mean permeability coefficient to CO2 increased linearly with gas pressure due to the plasticization effect induced by sorbed CO2. From the sorption isotherms for CO2 at 20 and 30°C it was judged that the glass transition was brought about by sorbed CO2 at temperatures below the glass-transition point of the pure polymer. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
《分离科学与技术》2012,47(11):1606-1616
This paper reports on the properties of an MFI-type zeolite (silicalite-1) membrane synthesized on a novel tubular support with a 0.45 µm-pore size active layer consisting of zirconium and titanium oxides. Even though the membrane was synthesized by a pore plugging method, apart from penetrating into the support, the silicalite-1 crystals formed a 1.5 µm layer on top of the support. After the zeolite synthesis, the Si constituted more than 35% of the active layer of the support, which implies small size and close packing of the silicalite-1 crystals in the pores of the active layer.

Single gas permeation tests with N2 and CO2 revealed comparable N2 and CO2 permeances. On the other hand, CO2/N2 gas separation tests performed at different total feed pressures and feed compositions lead to CO2/N2 permselectivities as high as 26.0, with the corresponding CO2 permeance of 6 × 10?8 mol/m2 Pa s. The effects of changing the partial pressure gradient of CO2 across the membrane by means of varying the total feed pressure and the feed composition on the CO2 permeance and CO2/N2 permselectivity are discussed.  相似文献   

6.
Adsorption of carbon dioxide by hydrotalcites was investigated by using a gravimetric method at 450 ‡C. Hydrotalcites possessed higher adsorption capacity of CO2 than other basic materials such as MgO and Al2O3. Two different preparation methods of hydrotalcite with varying Mg/Al ratio were employed to determine their effects on the adsorption capacity of CO2. In addition, varying amounts of K2CO3 were impregnated on the hydrotalcite to further increase its adsorption capacity of CO2. The hydrotalcite prepared by the high supersaturation method with Mg/Al=2 showed the most favorable adsorption-desorption pattern with high adsorption capacity of CO2. K2CO3 impregnation on the hydrotalcite increased the adsorption capacity of CO2 because it changed both the chemical and the physical properties of the hydrotalcite. The optimum amount of K2CO3 impregnation was 20 wt%. The hydrotalcite prepared by the high supersaturation method with Mg/Al=2 and 20 wt% K2CO3 impregnation has the highest adsorption capacity of CO2 with 0.77 mmol CO2/g at 450 ‡C and 800 mmHg.  相似文献   

7.
The permeations of pure CO2 and N2 gases and a binary gas mixture of CO2/N2 (20/80) through poly(dimethylsiloxane) (PDMS) membrane were carried out by the new permeation apparatus. The permeation and separation behaviors were characterized in terms of transport parameters, namely, permeability, diffusion, and solubility coefficients which were precisely determined by the continuous‐flow technique. In the permeation of the pure gases, feed pressure and temperature affected the solubility coefficients of CO2 and N2 in opposite ways, respectively; increasing feed pressure positively affects CO2 solubility coefficient and negatively affects N2 solubility coefficient, whereas increasing temperature favors only N2 sorption. In the permeation of the mixed gas, mass transport was observed to be affected mainly by the coupling in sorption, and the coupling was analyzed by a newly defined parameter permeation ratio. The coupling effects have been investigated on the permeation and separation behaviors in the permeation of the mixed gas varying temperature and feed pressure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 179–189, 2000  相似文献   

8.
Plasticization phenomena can significantly reduce the performance of polymeric membranes in high-pressure applications. Polyetherimides (PEIs) are a promising group of membrane materials that combine relatively high CO2/CH4 selectivities with high chemical and thermal stability. In this work sorption, swelling, and mixed gas separation performance of 3,3′,4,4′-oxydiphthalic dianhydride (ODPA)-based PEI polymers, with 1, 2 or 3 para-aryloxy substitutions in the diamine moeiety, is investigated under conditions where commercial membranes suffer from plasticization. Particular focus is on the influence of the amount of para-aryloxy substitutions and the film thickness. Results are compared with those of commercially available polymeric membrane materials (sulphonated PEEK, a segmented block-co-polymer PEBAX and the polyimide Matrimid).The glassy polymers display increasing CO2 sorption with increasing Tg. The larger extent of sorption results from a larger non-equilibrium excess free volume. Swelling of the polymers is induced by sorption of CO2 molecules in the non-equilibrium free volume as well as from molecules dissolved in the matrix. Dilation of the polymer is similar for each molecule sorbed. Correspondingly, the partial molar volume of CO2 is similar for molecules present in both regions.Mixed gas separation experiments with a 50/50% CO2/CH4 feed gas mixture showed high CO2/CH4 selectivities for the ODPA PEI films at elevated pressure. This shows that these materials could potentially be interesting for high-pressure gas separation applications, although additional gas permeation experiments using different feed gas compositions and thin films are required.  相似文献   

9.
The sorption and the transport of He, Ar, N2, CH4, and CO2 in miscible poly(methyl acrylate)(PMA)/poly(epichlorohydrin)(PECH) blends from 1 to 20 atm at 35°C are reported. For He, Ar, N2, and CH4, the permeabilities and the diffusion time lags are independent of the upstream pressure, if the compaction effect resulting from compression of the polymer membrane onto the supporting medium is eliminated. The permeability of CO2 increases with upstream pressure but solubility follows a simple Henry's law behavior. For all five gases, the dependence of solubility, diffusion coefficient, and permeability on blend composition are compared with theoretical mixing rules with the conclusion that both the interaction energy density and the excess activation energy for gas diffusion in the blends are near zero. The fact that the specific volumes of the blends exactly follow linear additivity also confirms that only very weak interactions exist between PMA and PECH.  相似文献   

10.
The absorption of CO2 from a mixture of CO2/N2 gas was carried out using a flat-stirred vessel and the polytetrafluoroethylene hollow fiber contained aqueous 2-amino-2-methyl-1-propanol (AMP) solution. The reaction of CO2 with AMP was confirmed to be a second order reversible reaction with fast-reaction region. The mass transfer resistance in the membrane side obtained from the comparison of the measured absorption rates of CO2 in a hollow fiber contained liquid membrane with a flat-stirred vessel corresponded to about 90% of overall-mass-transfer resistance. The mass transfer coefficient of hollow fiber phase could be evaluated, which was independent of CO2 loading.  相似文献   

11.
Gas–liquid hollow fiber membrane contactor can be a promising alternative for the CO2 absorption/stripping due to the advantages over traditional contacting devices. In this study, the structurally developed hydrophobic polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared via a wet spinning method. The membranes were characterized in terms of morphology, permeability, wetting resistance, overall porosity and mass transfer resistance. From the morphology analysis, the membranes demonstrated a thin outer finger-like layer with ultra thin skin and a thick inner sponge-like layer without skin. The characterization results indicated that the membranes possess a mean pore size of 9.6 nm with high permeability and wetting resistance and low mass transfer resistance (1.2 × 104 s/m). Physical CO2 absorption/stripping were conducted through the fabricated gas–liquid membrane contactor modules, where distilled water was used as the liquid absorbent. The liquid phase resistance was dominant due to significant change in the absorption/stripping flux with the liquid velocity. The CO2 absorption flux was approximately 10 times higher than the CO2 stripping flux at the same operating condition due to high solubility of CO2 in water as confirmed with the effect of liquid phase pressure and temperature on the absorption/stripping flux.  相似文献   

12.
Steady-state permeation rates for pure CO2, CH4, and O2 through two kinds of homogeneous dense membranes, copolymer of methyl methacrylate and n-butyl acrylate and poly(methyl methacrylate), were measured at three temperatures between 20 and 40°C and upstream pressures up to 3 MPa. The logarithms of the mean permeability coefficients for CO2 in both membranes increased linearly or quadratically with increasing upstream pressure, whereas the mean permeabilities for CH4 and CO2 were independent of pressure. The pressure dependence of the mean permeability coefficient for CO2 was interpreted in terms of a modified free-volume model of diffusion for a Henry's law population in glassy polymers. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
This study was carried out to investigate the reaction between CO2 and materials that contain CaO under dry grinding. Chemical reagent CaO was used in this experiment, and waste concrete was also tested to examine the feasibility of CO2 sorption into it. Samples were ground in a CO2 atmosphere by a centrifugal ball mill. The reaction was measured with the constant volume method. The effects of amount of sample, the number and diameter of balls, the concentration of CO2 in the mixture of CO2 and air and the rotational speed on the CO2 sorption were examined. The amount of the CO2 sorption under grinding was larger than that without grinding. The grinding enhanced the reaction between CaO and CO2. The CO2 sorption steeply increased with time in the early stage of grinding. After that, it increased gradually. The CO2 reacted with the CaO at the surface layer of the newly exposed surface of the CaO particles during the grinding. The initial sorption rate of CO2 was related with the shear force. In the latter stage of grinding, the grinding process caused the CaO particles to agglomerate. As a result, the sorption of CO2 became slow. It was found that the waste concrete had high potential for sorption of CO2 by means of dry grinding.  相似文献   

14.
The effect of NH3 plasma treatment on glassy poly(methyl methacrylate) (PMMA) membranes on the diffusion process for penetrant gases (CO2, O2, and N2) was investigated from mean permeability data. The mean permeability coefficient for CO2 definitely depended on the upstream pressure, whereas those for O2 and N2 remained constant regardless of the upstream pressure. For O2 transport, the permeability increased a little with increasing treatment power, and for N2 transport, it was not affected by the treatment power. For CO2 transport, NH3 plasma treatment promoted the transport of Langmuir mode, presumably through an increased Langmuir capacity constant for CO2. NH3 plasma treatment for PMMA membranes resulted in an increase in the separation factor of CO2 relative to N2 and in the permeability to CO2. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1068–1072, 2003  相似文献   

15.
The SnO2/Al2O3/Nb2O5/ISiO2 thick film devices were fabricated by screen printing and dipping methods, and their sensing characteristics to CH3CN gas was investigated. The oxidation products of CH3CN on the thick film were analyzed by FT-IR using a heatable gas cell. The IR results showed that the products formed by oxidation of CH3CN at 300 ‡C on the SnO2/Al2/Nb2O5 thick film without SiO2 were mainly CO2, H2O, and NH3, while on the SnO2/Al2O3/Nb2O5/SiO2 thick film products such as CO2, H2O, N2O, HNO3, and HNO2 were observed. The thick film devices containing SiO2 showed high selectivity and negative sensitivity to CH3CN due to the presence of nitrogen compounds produced by oxidation of CH3CN. Optimum amount of Nb2O5 and operating temperature were 1. 0 wt% and 300 ‡C, respectively.  相似文献   

16.
In a chemical-looping combustor (CLC), gaseous fuel is oxidized by metal oxide particle, e.g. oxygen carrier, in a reduction reactor (combustor), and the greenhouse gas CO2 is separated from the exhaust gases during the combustion. In this study, NiO/bentonite particle was examined on the basis of reduction reactivity, carbon deposition during reduction, and NOx formation during oxidation. Reactivity data for NiO/bentonite particle with methane and air were presented and discussed. During the reduction period, most of the CH4 are converted to CO2 with small formation of CO. Reduction reactivity (duration of reduction) of the NiO/bentonite particle increased with temperature, but at higher temperature, it is somewhat decreased. The NiO/bentonite particle tested showed no agglomeration or breakage up to 900 ‡C, but at 1,000 ‡C, sintering took place and lumps of particles were formed. Solid carbon was deposited on the oxygen carrier during high conversion region of reduction, i.e., during the end of reduction. It was found that the appropriate temperature for the NiO/bentonite particle is 900 ‡C for carbon deposition, reaction rate, and duration of reduction. We observed experimentally that NO, NO2, and N2O gases are not generated during oxidation.  相似文献   

17.
This article investigates the inactivation mechanism of high-pressure food treatment, considered as alternative to conventional biocidal processes. We aimed to determine intracellular pH decrease under CO2 and N2O pressure, so far postulated as one of the main causes of inactivation. Working with a lab-scale bioreactor in mild conditions – 25 °C and pressures up to 8 MPa – we monitored – for the first time during pressurization – cytoplasmic pH variations of Listeria innocua labeled with pH-sensitive fluorophores based on fluorescein.We show that carbonic acid, due to solubilization of CO2 into the aqueous phase, causes a rapid pH drop in the cytosol, reaching pH 4.8 at 1 MPa and falls below the detection limit of the indicator fluorophore of pH 4.0. This correlates with a reduced viability (below 90%) in all the pressure ranges investigated. Contrarily, treatment under N2O pressure reduces cell viability without significant pH-drop neither of intra- nor extra-cellular liquid at any pressure investigated. The pH value remains between 7 and 6 while an inactivation of more than 80% is achieved at 8 MPa.Our data clearly demonstrate that, as a critical pressure is achieved, microbial inactivation is mainly due to pressure-induced membrane permeation – stimulated by non-acidifying fluids as well, rather then cytoplasmic acidification, as widely argued so far. A definitive understanding of the microbial inactivation mechanism due to CO2/N2O under pressure has been advanced significantly.  相似文献   

18.
In this study, permeation of carbon dioxide (CO2) and methane (CH4) through the polycarbonate/polyethylene glycol (PC/PEG) blend membrane was investigated. The effect of PEG content (0–5 wt%) on the permeability and selectivity was studied. Permeability measurements were carried out at pressures of 1–7 bar and at room temperature. The membranes were characterized by Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and density measurement. The results revealed that the PC/PEG blends are miscible/partially miscible without considerable micro-phase separation. The effect of PEG content and gas pressure on the diffusion and solubility of coefficients were also investigated and analyzed. It was concluded that the most influential parameter for the permeation is the diffusion coefficient of the gases. The permeability and selectivity decrease as the operating pressure and PEG content are increased. Furthermore, the results showed that the addition of 5 wt% of PEG into PC increases the CO2/CH4 selectivity from 26.6 ± 0.99 to 40.9 ± 2.14 (more than 53%) at 1 bar.  相似文献   

19.
Experiments on the absorption of CO2 into a hollow fiber contained liquid membrane absorber were performed. The feed gas was a mixture of CO2 and N2, absorbent liquid was 2-amino-2-methyl-l-propanol and the hollow fiber was a microporous hydrophobic polytetrafluoroethylene membrane. Outlet concentration of CO2 from the absorber decreased as absorbent concentration increased, gas flow rate increased and were held constant for speed of agitation, but had a maximum value in the range of inlet concentration of CO2 from 5 to 40 mole%. The reaction rate constant obtained for CO2-amine system was 231 I/mol · s at 25 °C using a flat stirred vessel, and the membrane-side-mass-transfer coefficient was 1.217 × 10−5 mol/cm2 · s · atm in CO2/N2-amine system. A diffusion model based on mass transfer with fast-reaction was proposed to predict the performance of the absorber.  相似文献   

20.
Removing CO2 from flue gas streams has been a permanent challenge regarding environmental issues. Membrane technology is a solution for this problem but more efficient membranes are required. The fabrication of dual-layer polyurethane/polyethersulfone membrane by the co-casting technique is undertaken and the effects of previous evaporation time and coagulation water bath temperature on membrane morphology are explored. Uniform layers with excellent adhesion are obtained. The effect of feed pressure and temperature on membrane permeability and selectivity for CO2, N2, and O2 are studied. Increasing the pressure from 1 to 8 bar results in a reduction of CO2 permeability and CO2/N2 ideal selectivity from 19.6 to 13.0 barrer, and from 66 to 60, respectively. Temperature in the range of 25–45°C enhances CO2 permeability from 19.6 to 28.9 barrer, although CO2/N2 selectivity decreases from 66 to 43, yet showing good potential for applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号