首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we extend to asymmetric quantum error-correcting codes the construction methods, namely: puncturing, extending, expanding, direct sum and the $({ \mathbf u}| \mathbf{u}+{ \mathbf v})$ construction. By applying these methods, several families of asymmetric quantum codes can be constructed. Consequently, as an example of application of quantum code expansion developed here, new families of asymmetric quantum codes derived from generalized Reed-Muller codes, quadratic residue, Bose-Chaudhuri-Hocquenghem, character codes and affine-invariant codes are constructed.  相似文献   

2.
3.
Two new families of asymmetric quantum codes are constructed in this paper. The first one is derived from the Calderbank-Shor-Steane (CSS) construction applied to classical Reed-Solomon (RS) codes, providing quantum codes with parameters [[Nl(q l −1), Kl(q l −2d + c + 1), d z d/d x ≥ (dc)]] q , where q is a prime power and d > c + 1, c ≥ 1, l ≥ 1 are integers. The second family is derived from the CSS construction applied to classical generalized RS codes, generating quantum codes with parameters [[N = mn, K = m(2kn + c), d z d/d x ≥ (dc)]] q , where q is a prime power, 1 < k < n < 2k + cq m , k = nd + 1, and n, d > c + 1, c ≥ 1, m ≥ 1 are integers. Although the second proposed construction generalizes the first one, the techniques developed in both constructions are slightly different. These new codes have parameters better than or comparable to the ones available in the literature. Additionally, the proposed codes can be utilized in quantum channels having great asymmetry, that is, quantum channels in which the probability of occurrence of phase-shift errors is large when compared to the probability of occurrence of qudit-flip errors.  相似文献   

4.
Any Gray code for a set of combinatorial objects defines a total order relation on this set: x is less than y if and only if y occurs after x in the Gray code list. Let ? denote the order relation induced by the classical Gray code for the product set (the natural extension of the Binary Reflected Gray Code to k-ary tuples). The restriction of ? to the set of compositions and bounded compositions gives known Gray codes for those sets. Here we show that ? restricted to the set of bounded compositions of an interval yields still a Gray code. An n-composition of an interval is an n-tuple of integers whose sum lies between two integers; and the set of bounded n-compositions of an interval simultaneously generalizes product set and compositions of an integer, and so ? put under a single roof all these Gray codes.As a byproduct we obtain Gray codes for permutations with a number of inversions lying between two integers, and with even/odd number of inversions or cycles. Such particular classes of permutations are used to solve some computational difficult problems.  相似文献   

5.
In this paper, two families of non-narrow-sense (NNS) BCH codes of lengths \(n=\frac{q^{2m}-1}{q^2-1}\) and \(n=\frac{q^{2m}-1}{q+1}\) (\(m\ge 3)\) over the finite field \(\mathbf {F}_{q^2}\) are studied. The maximum designed distances \(\delta ^\mathrm{new}_\mathrm{max}\) of these dual-containing BCH codes are determined by a careful analysis of properties of the cyclotomic cosets. NNS BCH codes which achieve these maximum designed distances are presented, and a sequence of nested NNS BCH codes that contain these BCH codes with maximum designed distances are constructed and their parameters are computed. Consequently, new nonbinary quantum BCH codes are derived from these NNS BCH codes. The new quantum codes presented here include many classes of good quantum codes, which have parameters better than those constructed from narrow-sense BCH codes, negacyclic and constacyclic BCH codes in the literature.  相似文献   

6.
The entanglement-assisted formalism generalizes the standard stabilizer formalism, which can transform arbitrary classical linear codes into entanglement-assisted quantum error-correcting codes (EAQECCs) by using pre-shared entanglement between the sender and the receiver. In this work, we construct six classes of q-ary entanglement-assisted quantum MDS (EAQMDS) codes based on classical negacyclic MDS codes by exploiting two or more pre-shared maximally entangled states. We show that two of these six classes q-ary EAQMDS have minimum distance more larger than \(q+1\). Most of these q-ary EAQMDS codes are new in the sense that their parameters are not covered by the codes available in the literature.  相似文献   

7.
Recently, entanglement-assisted quantum error-correcting codes (EAQECCs) have been constructed by cyclic codes and negacyclic codes. In this paper, by decomposing the defining set of constacyclic codes, we construct four classes of new EAQECCs, which satisfy the entanglement-assisted quantum Singleton bound.  相似文献   

8.
Recently, entanglement-assisted quantum codes have been constructed from cyclic codes by some scholars. However, how to determine the number of shared pairs required to construct entanglement-assisted quantum codes is not an easy work. In this paper, we propose a decomposition of the defining set of negacyclic codes. Based on this method, four families of entanglement-assisted quantum codes constructed in this paper satisfy the entanglement-assisted quantum Singleton bound, where the minimum distance satisfies \(q+1 \le d\le \frac{n+2}{2}\). Furthermore, we construct two families of entanglement-assisted quantum codes with maximal entanglement.  相似文献   

9.
In this paper, we firstly study construction of new quantum error-correcting codes (QECCs) from three classes of quaternary imprimitive BCH codes. As a result, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing quaternary BCH codes are determined to be much larger than the result given according to Aly et al. (IEEE Trans Inf Theory 53:1183–1188, 2007) for each different code length. Thus, families of new QECCs are newly obtained, and the constructed QECCs have larger distance than those in the previous literature. Secondly, we apply a combinatorial construction to the imprimitive BCH codes with their corresponding primitive counterpart and construct many new linear quantum codes with good parameters, some of which have parameters exceeding the finite Gilbert–Varshamov bound for linear quantum codes.  相似文献   

10.
Let \(R=\mathbb {F}_{2^{m}}+u\mathbb {F}_{2^{m}}+\cdots +u^{k}\mathbb {F}_{2^{m}}\), where \(\mathbb {F}_{2^{m}}\) is the finite field with \(2^{m}\) elements, m is a positive integer, and u is an indeterminate with \(u^{k+1}=0.\) In this paper, we propose the constructions of two new families of quantum codes obtained from dual-containing cyclic codes of odd length over R. A new Gray map over R is defined, and a sufficient and necessary condition for the existence of dual-containing cyclic codes over R is given. A new family of \(2^{m}\)-ary quantum codes is obtained via the Gray map and the Calderbank–Shor–Steane construction from dual-containing cyclic codes over R. In particular, a new family of binary quantum codes is obtained via the Gray map, the trace map and the Calderbank–Shor–Steane construction from dual-containing cyclic codes over R.  相似文献   

11.
Quantum error correcting codes are indispensable for quantum information processing and quantum computation. In 1995 and 1996, Shor and Steane gave first several examples of quantum codes from classical error correcting codes. The construction of efficient quantum codes is now an active multi-discipline research field. In this paper we review the known several constructions of quantum codes and present some examples.  相似文献   

12.
Quantum error correcting codes are indispensable for quantum information processing and quantum computation. In 1995 and 1996, Shor and Steane gave first several examples of quantum codes from classical error correcting codes. The construction of efficient quantum codes is now an active multi-discipline research field. In this paper we review the known several constructions of quantum codes and present some examples.  相似文献   

13.
The entanglement-assisted stabilizer formalism overcomes the dual-containing constraint of standard stabilizer formalism for constructing quantum codes. This allows ones to construct entanglement-assisted quantum error-correcting codes (EAQECCs) from arbitrary linear codes by pre-shared entanglement between the sender and the receiver. However, it is not easy to determine the number c of pre-shared entanglement pairs required to construct an EAQECC from arbitrary linear codes. In this paper, let q be a prime power, we aim to construct new q-ary EAQECCs from constacyclic codes. Firstly, we define the decomposition of the defining set of constacyclic codes, which transforms the problem of determining the number c into determining a subset of the defining set of underlying constacyclic codes. Secondly, five families of non-Hermitian dual-containing constacyclic codes are discussed. Hence, many entanglement-assisted quantum maximum distance separable codes with \(c\le 7\) are constructed from them, including ones with minimum distance \(d\ge q+1\). Most of these codes are new, and some of them have better performance than ones obtained in the literature.  相似文献   

14.
Wang  Junli  Li  Ruihu  Liu  Yang  Guo  Guanmin 《Quantum Information Processing》2020,19(2):1-12
Quantum Information Processing - Any quantum communication task requires a common reference frame (i.e., phase, coordinate system). In particular, quantum key distribution requires different bases...  相似文献   

15.
量子纠错码在量子通信和量子计算中起着非常重要的作用,之前的量子纠错码的构造大部分都是利用经典的纠错码来构造得到,如Hamming码,BCH码,RS码,Reed-Muller码等各种经典纠错码。目前,很少有人利用图生成的线性码方法来构造量子纠错码,提出了一个新的构造量子纠错码和非对称量子纠错码的方法,即利用[n]立方图的线图生成的二元线性码来构造量子纠错码和非对称量子纠错码,得到了一类新的量子纠错码和非对称量子纠错码,并且,当码字的长度较大时,对所构造的非对称量子纠错码,在非对称信道上有更大的纠错能力。  相似文献   

16.
17.
This paper discusses optimal binary codes and pure binary quantum codes created using Steane construction. First, a local search algorithm for a special subclass of quasi-cyclic codes is proposed, then five binary quasi-cyclic codes are built. Second, three classical construction methods are generalized for new codes from old such that they are suitable for constructing binary self-orthogonal codes, and 62 binary codes and six subcode chains of obtained self-orthogonal codes are designed. Third, six pure binary quantum codes are constructed from the code pairs obtained through Steane construction. There are 66 good binary codes that include 12 optimal linear codes, 45 known optimal linear codes, and nine known optimal self-orthogonal codes. The six pure binary quantum codes all achieve the performance of their additive counterparts constructed by quaternary construction and thus are known optimal codes.  相似文献   

18.
Quantum Information Processing - One central theme in quantum error correction is to construct quantum codes that have large minimum distances. It has been a great challenge to construct new...  相似文献   

19.
In this paper, we present the pm-ary entanglement-assisted (EA) stabilizer formalism, where p is a prime and m is a positive integer. Given an arbitrary non-abelian “stabilizer”, the problem of code construction and encoding is settled perfectly in the case of m = 1. The optimal number of required maximally entangled pairs is discussed and an algorithm to determine the encoding and decoding circuits is proposed. We also generalize several bounds on p-ary EA stabilizer codes, such as the BCH bound, the G-V bound and the linear programming bound. However, the issue becomes tricky when it comes to m > 1, in which case, the former construction method applies only when the non-commuting “stabilizer” satisfies a sophisticated limitation.  相似文献   

20.
In this paper, we construct several new families of quantum codes with good parameters. These new quantum codes are derived from (classical) t-point (\(t\ge 1\)) algebraic geometry (AG) codes by applying the Calderbank–Shor–Steane (CSS) construction. More precisely, we construct two classical AG codes \(C_1\) and \(C_2\) such that \(C_1\subset C_2\), applying after the well-known CSS construction to \(C_1\) and \(C_2\). Many of these new codes have large minimum distances when compared with their code lengths as well as they also have small Singleton defects. As an example, we construct a family \({[[46, 2(t_2 - t_1), d]]}_{25}\) of quantum codes, where \(t_1 , t_2\) are positive integers such that \(1<t_1< t_2 < 23\) and \(d\ge \min \{ 46 - 2t_2 , 2t_1 - 2 \}\), of length \(n=46\), with minimum distance in the range \(2\le d\le 20\), having Singleton defect at most four. Additionally, by applying the CSS construction to sequences of t-point (classical) AG codes constructed in this paper, we generate sequences of asymptotically good quantum codes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号