首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
High-temperature deformation characteristics of YBa2Cu3O7–x oxide (YBCO) and YBa2Cu3O7–x /Ag composite (YBCO/Ag) in uniaxial compression have been investigated. A compression test was carried out at temperatures from 780–930°C at initial strain rates between 10–6 and 10–4 s–1. YBCO/Ag composites with fine, dense and equiaxed grains were compressed over 120% with no indication of failure at higher temperatures, and the strain-rate sensitivity exponent, m, was found to be about 0.42–0.46 between 890 and 930°C. They are considered to be one indication of superplasticity. The activation energy for deformation was 500–580 KJ mol–1. The specimens suffered grain growth slightly during the deformation at 930°C and the majority of growth might be a function of exposure time, temperature and silver content, but each grain maintained the equiaxed shape after extensive superplastic deformation. This is consistent with a grain-boundary sliding mechanism. The silver at grain boundaries acts to decrease the activation energy for deformation and promote the grain-boundary sliding.  相似文献   

2.
Transient creep data for high-purity polycrystalline alumina are examined at the testing temperature of 1150–1250 °C. The data are analysed in terms of the effect of stress and temperature on the extent of transient time and strain.In order to explain the observed transient creep, a time function of creep strain is proposed from a two-dimensional model based on grain boundary sliding. The grain boundary sliding is assumed to take place by the glide of grain boundary dislocations accommodated by dislocation climb in the neighboring grain boundaries. The time function for a creep strain obtained from the model is given in a form
which is similar to the previous empirical formula describing the experimental creep curves in metallic alloys. The model predicts that the transient creep strain T is approximately proportional to and the extent of transient creep time tT is inversely proportional to flow stress. The prediction is consistent with the experimental data in high-purity, fine-grained alumina at temperatures between 1150 and 1250°C.  相似文献   

3.
Creep in pure and two phase nickel-doped alumina has been investigated in the stress range 0.70 to 4.57 kgf mm–2 (1000 to 6500 psi), and temperature range 1450 to 1800° C, for grain sizes from 15 to 45 m (pure alumina) and 15 to 30 um, (nickel-doped alumina). The effect of stress, grain size and temperature on the creep rate suggests that diffusion controlled grain-boundary sliding is the predominant creep mechanism at low stresses and small grain sizes. However, the stress exponents show that some non-viscous boundary sliding occurs even at the lowest stresses investigated. This mechanism is confirmed by metallographic evidence, which shows considerable boundary corrugation in the deformed aluminas. At higher stresses and larger grain sizes the localized propagation of microcracks leads to high stress exponents in the creep rate equation. The nickel dopant, which introduces an evenly distributed spinel second phase into the alumina matrix, increases the creep rate and enhances boundary sliding and localized crack propagation. The weakening effect of the second phase increases with grain size, and tertiary creep occurs at strains of 0.5% and below in large grained material.  相似文献   

4.
Pure nanocrystalline -alumina powders were coated with different fractions (5, 10, and 15 vol%) of SiO2-SrO glass using the sol-gel technique. The isostatically cold pressed powders were pressureless sintered in air for 5 h in the temperature range of 1250°C to 1550°C. The relative densities were ranged between 60 to 90% of the theoretical and were composition dependent. The density was increased with the sintering temperature. In pure alumina, the to phase transformation went to completion by sintering at 1250°C. However, in the glass-coated samples, transition -alumina was mostly retained after sintering at the same temperature. Pure nanocrystalline alumina sintered at 1350°C exhibited vermicular structure with isolated pores. The microstructure of the low glass-containing samples exhibited nanocrystalline to submicron size grains arranged in platelet-shaped clusters. Samples with higher glass contents exhibited also micron-size needle-shape grains of strontium aluminate.  相似文献   

5.
The mechanical properties of VBe12, both at room and elevated temperatures (up to 1200°C), have been measured. Room-temperature properties, including Young's modulus, flexural strength, and fracture toughness are reported. The material behaved elastically at room temperature but became plastic at temperatures above 1000°C. Creep properties of VBe12 were also studied in temperature ranges from 1000–1200°C and applied stress ranges from 33–58 MPa. At low strain rates (approximately < 10–5s–1), the stress exponent was about 4, suggesting deformation was controlled by dislocation climb. Microstructural examination indicated that fracture was initiated from grain boundaries subjected to tensile stresses. The creep behaviour of VBe12 is briefly compared with that of other intermetallics.  相似文献   

6.
Superplastic deformation of mechanically alloyed aluminium IN90211 was studied by texture analysis. The textures in three deformed specimens were investigated as a function of strain using the three-dimensional crystal orientation distribution functions (CODFs). The results for the two superplastically deformed specimens (425 °C, strain rate of 1 s–1, stress near 50 MPa, and 475 °C, initial strain rate of 77 s–1, about 110 MPa) indicate that at strains below about 2.0, the specimen deforms by grain-boundary sliding and single (or double) slip, and at larger strains the deformation is dominated by grain-boundary sliding, multiple slip and some recrystallization. At 475°C, 330s–1, and stress near 160 MPa, the specimen was above the superplastic regime, and the resulting texture changes with deformation were markedly different from superplastic results, and quite unusual.  相似文献   

7.
The effect of simultaneous doping with manganese and titanium on diffusional creep was studied in dense, polycrystalline alumina over a range of grain sizes (4–80m) and temperatures (1175–1250° C). At a total dopant concentration of 0.32–0.37 cation %, diffusional creep rates were enhanced considerably such that the temperature at which cation mass transport was significant was suppressed by at least 200° C compared to that observed in undoped material. The Mn-Ti (and Cu-Ti) dopant couple was far more effective in enhancing creep rates and suppressing sintering temperatures than the Fe-Ti couple. The enhanced mass transport kinetics are believed to be caused by significant increases in both aluminium lattice and grain-boundary diffusion. When aluminium grain-boundary diffusion is enhanced by increasing the concentration of divalent impurity (Mn2+, Fe2+) or by creep testing at low temperatures, creep deformation is Newtonian viscous.  相似文献   

8.
The four-point bending creep behavior of a Sm-- Sialon composite, in which Sm-melilite solid solution (denoted as M) was designed as intergranular phase, was investigated in the temperature range 1260–1350°C and stresses between 85 and 290 MPa. At temperatures less than 1300°C, the stress exponents were measured to be 1.2–1.5, and the creep activation energy was 708 kJ mol–1, the dominant creep mechanism was identified as diffusion coupled with grain boundary sliding. At temperatures above 1300°C, the stress exponents were determined to be 2.3–2.4, and creep activation energy was 507 kJ mol –1, the dominant creep mechanism was suggested to be diffusion cavity growth at sliding grain boundaries. Creep test at 1350°C for pre-oxidation sample showed a pure diffusion mechanism, because of a stress exponent of 1. N3– diffusing along grain boundaries was believed to be the rate controlling mechanism for diffusion creep. The oxidation and Sialon phase transformation were analyzed and their effect on creep was evaluated.  相似文献   

9.
Grain boundary sliding and migration often accompany high temperature deformation in alumina, however the studies of the sliding and migration behavior of individual boundaries in bicrystals during deformation are extremely limited.In this study a single grain boundary in an alumina bicrystal was deformed at high temperature (1450∘C) at a constant strain rate (2× 10−6/s). Evolution of the grain boundary structure during deformation was monitored using optical microscopy. Movement of micron-sized facets inclined to the grain boundary plane led to the facet coarsening and produced macroscopically “curved” regions along the grain boundary.HRTEM studies reveal nanoscale analogues to such “curved” segments, which appear to contain nanoscale facets. Rumpling of the grain boundary during early stages of deformation may assist the nucleation of facets inclined to the original grain boundary plane. Macroscopic facets may develop by either growth and coarsening of atomic-height irregularities initially in the grain boundary or from atomic-height ledges formed during deformation.  相似文献   

10.
The superplastic properties of a engineering TiAl based alloy with a duplex microstructure were investigated with respect to the effect of testing temperatures ranging from 950°C to 1075°C and strain rates ranging from 8 × 10–5 s–1 to 2 × 10–3 s–1. A maximum elongation of 467% was achieved at 1050°C and at a strain rate of 8 × 10–5 s–1. The apparent activation energy was calculated to be 345 kJ/mol. Also, the dependence of the strain rate sensitivity values on strain during superplastic deformation was examined through the jump strain rate tests, and microstructural analysis was performed after superplastic deformation. It is concluded that superplasticity of the alloy at relatively low temperature and relatively high strain rate results from dynamic recrystallization, and grain boundary sliding and associated accommodation mechanism is related to superplasticity at higher temperature and lower strain rate.  相似文献   

11.
High-temperature tensile deformation behavior of high-purity HIPed silicon nitride material was investigated in the temperature range between 1600°C and 1750°C. Recoverable anelastic and non-recoverable deformation was observed in high-purity HIPed silicon nitride. A power-law deformation model analogous to rheological models was used to distinguish the different deformation components. A stress exponent n = 1.64 and an activation energy Q 1 = 708 kJ/mol was determined for the non-recoverable deformation. For the anelastic deformation a stress exponent p = 4 and an activation energy Q 3 = 619 kJ/mol was observed. Diffusional creep and grain boundary sliding with the accomodation process responsible for the anelastic component are discussed as deformation mechanisms.  相似文献   

12.
The four-point bending creep properties of a hot-pressed β-sialon with Sm–melilite solid solution (denoted as M′) as intergranular phase have been studied in the temperature range 1250–1350°C in air. Creep rates plotted against stresses gave stress exponents of 1.45, 1.51 and 1.72 at 1250, 1300 and 1350°C, respectively, and Arrhenius plot between creep rate and temperature yielded a creep activation energy of 576 kJ mol−1. Cavities were found to be mainly on the triple grain junctions. Diffusion coupled with grain boundary sliding and accompanied by the formation of wedge-shaped cavities was identified as the dominant creep mechanism.  相似文献   

13.
Tensile creep of whisker-reinforced silicon nitride   总被引:1,自引:0,他引:1  
This paper presents a study of the creep and creep rupture behaviour of hot-pressed silicon nitride reinforced with 30 vol% SiC whiskers. The material was tested in both tension and compression at temperatures ranging from 1100 to 1250°C for periods as long as 1000 h. A comparison was made between the creep behaviour of whisker-reinforced and whisker-free silicon nitride. Principal findings were: (i) transient creep due to devitrification of the intergranular phase dominates high-temperature creep behaviour; (ii) at high temperatures and stresses, cavitation at the whisker-silicon nitride interface enhances the creep rate and reduces the lifetime of the silicon nitride composite; (iii) resistance to creep deformation is greater in compression than in tension; (iv) the time to rupture is a power function of the creep rate, so that the temperature and stress dependence of the failure time is determined solely by the temperature and stress dependence of the creep rate; (v) as a consequence of differences in grain morphology and glass composition between whisker-free and whisker-reinforced material, little effect of whisker additions on the creep rate was observed.  相似文献   

14.
Fracture interfaces formed in silicon nitride at high temperatures were studied using light and electron microscopy. The structure of the fracture interface depended on the type of silicon nitride fractured. High-purity, reaction-bonded silicon nitride always formed flat, relatively featureless, fracture surfaces. Fracture occurred by a brittle mode even at the highest temperature (1500° C) studied. The critical stress intensity factor for reaction-bonded silicon nitride ( 2.2 MN m–3/2) is relatively low and is insensitive to temperature. By contrast, hot-pressed silicon nitride gave evidence of plastic flow during fracture at elevated temperatures. Crack growth in magnesia-doped, hot-pressed silicon nitride occurs by creep, caused by grain boundary sliding and grain separation in the vicinity of the crack tip. As a consequence of this behaviour, extensive crack branching was observed along the fracture path. The primary and secondary cracks followed intergranular paths; sometimes dislocation networks, generated by momentary crack arrest, were found in grains bordering the crack interface. As a result of the high temperature, cracks were usually filled with both amorphous and crystalline oxides that formed during the fracture studies. Electron microscopy studies of the compressive surfaces of fourpoint bend specimens gave evidence of grain deformation at high temperatures by diffusion and dislocation motion.  相似文献   

15.
The creep, thermal expansion, and elastic modulus properties for chemically vapour deposited SiC fibres were measured between 1000 and 1500°C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 800 MPa. The controlling activation energy was 480 ± 20 kJ mol–1. Thermal pretreatments near 1200 and 145O° C were found to significantly reduce fibre creep. These results coupled with creep recovery observations indicate that below 1400°C fibre creep is anelastic with negligible plastic component. This allowed a simple predictive method to be developed for describing fibre total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fibre creep is the result of -SiC grain boundary sliding, controlled by a small percentage of free silicon in the grain boundaries.  相似文献   

16.
Novel composite materials have been developed as alternative forms to immobilise nuclear solid waste. These composites are made of a lead-containing glass matrix, into which particles of lanthanum zirconate pyrochlore are embedded in 10 and 30 vol% concentrations. The fabrication involves powder mixing, pressing and pressureless sintering. The processing conditions were investigated with the aim of achieving the highest possible density. The best composites obtained showed a good distribution of the lanthanum zirconate particles in the glass matrix, strong bonding of the particles to the matrix and relatively low porosity (<10%). The best sintering temperature was 600°C for the 10 vol% composite and 650°C for 30 vol%. Sintering was carried out for an hour and a heating rate of 10°C · min–1 was shown to be superior to a heating rate of 2°C · min–1. At the relatively low sintering temperatures used, the pyrochlore crystalline structure of lanthanum zirconate, relevant for containment of radioactive nuclei, was stable.  相似文献   

17.
High-temperature compression tests were performed in air for YBa2Cu3O7–x polycrystals with grain sizes of 3 and 7 m at various strain rates between 1.3×10–5 and 4×10–4s–1 and at temperatures between 1136 and 1253 K. Steady state deformation appeared above 1203 K for both samples. A stress exponent of 1.3 and an activation energy of 150 kJ mol–1 were evaluated. The compression tests and microstructural observations revealed that there was a difference in deformation mechanism above and below 1203 K. The dominant mechanism was diffusional creep associated with grain-boundary sliding above 1203 K, and dislocation glide accompanied with grain-boundary sliding below 1203 K. The growth of anisotropic grains and their preferred arrangement were enhanced by deformation.  相似文献   

18.
An Al–Zn–Mg–Cu alloy was friction stir processed over two kinds of backing anvils, at two different cooling rates. A finer grain size, 0.3 vs 0.5 μm, was obtained by processing at the highest cooling rate. Both materials showed superplastic behavior with a maximum elongation to fracture of about 510%. Grain boundary sliding was the operative deformation mechanism. Furthermore, the finer grain size material showed high strain rate superplasticity, at 10−2 s−1, at lower temperatures, as low as 250 °C.  相似文献   

19.
The flexural strength of yttria-partially stabilized zirconia/alumina composite in the sintered and hot isostatically pressed condition (Super PSZ) was evaluated as a function of temperature (20–1300°C in air environment), applied stress and time. Failure was essentially governed by the presence of processing defects such as zirconia or alumina agglomerates. The sudden decrease in fracture strength at relatively low temperatures (400–600°C) is believed to be due to the stability of the tetragonal phase and relative decrease in the extent of the stress-induced martensitic phase transformation of the tetragonal to monoclinic phase. Flexural stress rupture testing at 300–1000°C in air indicated the material's susceptibility to time-dependent failure, and outlines safe applied stress levels for a given temperature. Stress rupture testing at 1000°C at low applied stress levels showed bending of specimens, indicating the onset of plasticity or viscous flow of the glassy phase and consequent degradation of material strength.  相似文献   

20.
The uniaxial, reverse cyclic fatigue performance of a commercially available hot isostatically pressed silicon nitride was examined at 1370 °C in air and with a 1 Hz sinusoidal waveform using button-head tensile specimens. Specimens did not fail in less than 106 cycles when the applied stress amplitude was less than 280 MPa. Slow crack growth occurred at stress amplitudes 280 MPa and failure always occurred during the tensile stroke of the waveform. Multi-grain junction cavities resulted (i.e., the accumulation of net tensile creep strain) as a consequence of the reverse cyclic loading even though the specimens endured half their life under tensile stresses and the other half under compressive stresses. The presence of multi-grain junction cavities was a consequence of the stress exponent of tensile creep strain being greater than the stress exponent of compressive creep strain. Lastly, it was observed that the static creep resistance of this material improved when it was first subjected to reverse cyclic loading at 1370°C for at least 106 cycles at 1 Hz. Silicon nitride grain coarsening (which was a consequence of the completion of the to silicon nitride solution/reprecipitation process that occurred during the history of the reverse cyclic loading) lessened the capacity for grain boundary sliding resulting in an improved static creep resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号