首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A path in an edge-colored graph G, whose adjacent edges may have the same color, is called a rainbow path if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the minimum integer i for which there exists an i-edge-coloring of G such that every two distinct vertices of G are connected by a rainbow path. The strong rainbow connection number src(G) of G is the minimum integer i for which there exists an i-edge-coloring of G such that every two distinct vertices u and v of G are connected by a rainbow path of length d(u,v). In this paper, we give upper and lower bounds of the (strong) rainbow connection numbers of Cayley graphs on Abelian groups. Moreover, we determine the (strong) rainbow connection numbers of some special cases.  相似文献   

2.
For a graph G=(V,E) and a color set C, let f:EC be an edge-coloring of G in which two adjacent edges may have the same color. Then, the graph G edge-colored by f is rainbow connected if every two vertices of G have a path in which all edges are assigned distinct colors. Chakraborty et al. defined the problem of determining whether the graph colored by a given edge-coloring is rainbow connected. Chen et al. introduced the vertex-coloring version of the problem as a variant, and we introduce the total-coloring version in this paper. We settle the precise computational complexities of all the three problems with regards to graph diameters, and also characterize these with regards to certain graph classes: cacti, outer planer and series-parallel graphs. We then give FPT algorithms for the three problems on general graphs when parameterized by the number of colors in C; our FPT algorithms imply that all the three problems can be solved in polynomial time for any graph with n vertices if |C|=O(logn).  相似文献   

3.
In this paper, we focus on the oriented coloring of graphs. Oriented coloring is a coloring of the vertices of an oriented graph G without symmetric arcs such that (i) no two neighbors in G are assigned the same color, and (ii) if two vertices u and v such that (u,v)∈A(G) are assigned colors c(u) and c(v), then for any (z,t)∈A(G), we cannot have simultaneously c(z)=c(v) and c(t)=c(u). The oriented chromatic number of an unoriented graph G is the smallest number k of colors for which any of the orientations of G can be colored with k colors.The main results we obtain in this paper are bounds on the oriented chromatic number of particular families of planar graphs, namely 2-dimensional grids, fat trees and fat fat trees.  相似文献   

4.
In this paper, we study the complexity of several coloring problems on graphs, parameterized by the treewidth of the graph.
1.
The List Coloring problem takes as input a graph G, together with an assignment to each vertex v of a set of colors Cv. The problem is to determine whether it is possible to choose a color for vertex v from the set of permitted colors Cv, for each vertex, so that the obtained coloring of G is proper. We show that this problem is W[1]-hard, parameterized by the treewidth of G. The closely related Precoloring Extension problem is also shown to be W[1]-hard, parameterized by treewidth.
2.
An equitable coloring of a graph G is a proper coloring of the vertices where the numbers of vertices having any two distinct colors differs by at most one. We show that the problem is hard for W[1], parameterized by the treewidth plus the number of colors. We also show that a list-based variation, List Equitable Coloring is W[1]-hard for forests, parameterized by the number of colors on the lists.
3.
The list chromatic numberχl(G) of a graph G is defined to be the smallest positive integer r, such that for every assignment to the vertices v of G, of a list Lv of colors, where each list has length at least r, there is a choice of one color from each vertex list Lv yielding a proper coloring of G. We show that the problem of determining whether χl(G)?r, the List Chromatic Number problem, is solvable in linear time on graphs of constant treewidth.
  相似文献   

5.
6.
A hub set in a graph G is a set UV(G) such that any two vertices outside U are connected by a path whose internal vertices lie in U. We prove that h(G)?hc(G)?γc(G)?h(G)+1, where h(G), hc(G), and γc(G), respectively, are the minimum sizes of a hub set in G, a hub set inducing a connected subgraph, and a connected dominating set. Furthermore, all graphs with γc(G)>hc(G)?4 are obtained by substituting graphs into three consecutive vertices of a cycle; this yields a polynomial-time algorithm to check whether hc(G)=γc(G).  相似文献   

7.
Let G be a graph, and let each vertex v of G have a positive integer weight ω(v). A multicoloring of G is to assign each vertex v a set of ω(v) colors so that any pair of adjacent vertices receive disjoint sets of colors. This paper presents an algorithm to find a multicoloring of a given series-parallel graph G with the minimum number of colors in time O(n W), where n is the number of vertices and W is the maximum weight of vertices in G.  相似文献   

8.
In the paper we study new approaches to the problem of list coloring of graphs. In the problem we are given a simple graph G=(V,E) and, for every vV, a nonempty set of integers S(v); we ask if there is a coloring c of G such that c(v)∈S(v) for every vV. Modern approaches, connected with applications, change the question—we now ask if S can be changed, using only some elementary transformations, to ensure that there is such a coloring and, if the answer is yes, what is the minimal number of changes. In the paper for studying the adding, the trading and the exchange models of list coloring, we use the following transformations:
adding of colors (the adding model): select two vertices u, v and a color cS(u); add c to S(v), i.e. set S(v):=S(v)∪{c};
trading of colors (the trading model): select two vertices u, v and a color cS(u); move c from S(u) to S(v), i.e. set S(u):=S(u)?{c} and S(v):=S(v)∪{c};
exchange of colors (the exchange model): select two vertices u, v and two colors cS(u), dS(v); exchange c with d, i.e. set S(u):=(S(u)?{c})∪{d} and S(v):=(S(v)?{d})∪{c}.
Our study focuses on computational complexity of the above models and their edge versions. We consider these problems on complete graphs, graphs with bounded cyclicity and partial k-trees, receiving in all cases polynomial algorithms or proofs of NP-hardness.  相似文献   

9.
Rahman and Kaykobad proved the following theorem on Hamiltonian paths in graphs. Let G be a connected graph with n vertices. If d(u)+d(v)+δ(u,v)?n+1 for each pair of distinct non-adjacent vertices u and v in G, where δ(u,v) is the length of a shortest path between u and v in G, then G has a Hamiltonian path. It is shown that except for two families of graphs a graph is Hamiltonian if it satisfies the condition in Rahman and Kaykobad's theorem. The result obtained in this note is also an answer for a question posed by Rahman and Kaykobad.  相似文献   

10.
In 2000, Li et al. introduced dual-cube networks, denoted by DCn for n?1, using the hypercube family Qn and showed the vertex symmetry and some fault-tolerant hamiltonian properties of DCn. In this article, we introduce a new family of interconnection networks called dual-cube extensive networks, denoted by DCEN(G). Given any arbitrary graph G, DCEN(G) is generated from G using the similar structure of DCn. We show that if G is a nonbipartite and hamiltonian connected graph, then DCEN(G) is hamiltonian connected. In addition, if G has the property that for any two distinct vertices u,v of G, there exist three disjoint paths between u and v such that these three paths span the graph G, then DCEN(G) preserves the same property. Furthermore, we prove that the similar results hold when G is a bipartite graph.  相似文献   

11.
An important optimization problem in the design of cellular networks is to assign sets of frequencies to transmitters to avoid unacceptable interference. A cellular network is generally modeled as a subgraph of the infinite triangular lattice. The distributed frequency assignment problem can be abstracted as a multicoloring problem on a weighted hexagonal graph, where the weight vector represents the number of calls to be assigned at vertices. In this paper we present a 2-local distributed algorithm for multicoloring triangle-free hexagonal graphs using only the local clique numbers ω1(v) and ω2(v) at each vertex v of the given hexagonal graph, which can be computed from local information available at the vertex. We prove that the algorithm uses no more than colors for any triangle-free hexagonal graph G, without explicitly computing the global clique number ω(G). Hence the competitive ratio of the algorithm is 5/4.  相似文献   

12.
Let G be a graph, and let each vertex v of G have a positive integer weight (v). A multicoloring of G is to assign each vertex v a set of (v) colors so that any pair of adjacent vertices receive disjoint sets of colors. This paper presents an algorithm to find a multicoloring of a given series-parallel graph G with the minimum number of colors in time O(n W), where n is the number of vertices and W is the maximum weight of vertices in G.  相似文献   

13.
Given an integer c, an edge colored graph G is said to be rainbow c-splittable if it can be decomposed into at most c vertex-disjoint monochromatic induced subgraphs of distinct colors. We provide a polynomial-time algorithm for deciding whether an edge-colored complete graph is rainbow c-splittable. For not necessarily complete graphs, we show that the problem is polynomial if c=2, whereas for c≥3 it is NP-complete even if the graph has maximum degree 2c−1. Finally, it remains NP-complete even for 2-edge colored graphs of maximum degree 7c−14.  相似文献   

14.
An adjacent vertex-distinguishing edge coloring of a simple graph G is a proper edge coloring of G such that incident edge sets of any two adjacent vertices are assigned different sets of colors. A total coloring of a graph G is a coloring of both the edges and the vertices. A total coloring is proper if no two adjacent or incident elements receive the same color. An adjacent vertex-distinguishing total coloring h of a simple graph G=(V,E) is a proper total coloring of G such that H(u)≠H(v) for any two adjacent vertices u and v, where H(u)={h(wu)|wuE(G)}∪{h(u)} and H(v)={h(xv)|xvE(G)}∪{h(v)}. The minimum number of colors required for an adjacent vertex-distinguishing edge coloring (resp. an adjacent vertex-distinguishing total coloring) of G is called the adjacent vertex-distinguishing edge chromatic number (resp. adjacent vertex-distinguishing total chromatic number) of G and denoted by (resp. χat(G)). In this paper, we consider the adjacent vertex-distinguishing edge chromatic number and adjacent vertex-distinguishing total chromatic number of the hypercube Qn, prove that for n?3 and χat(Qn)=Δ(Qn)+2 for n?2.  相似文献   

15.
A k-containerC(u,v) of a graph G is a set of k disjoint paths joining u to v. A k-container C(u,v) is a k∗-container if every vertex of G is incident with a path in C(u,v). A bipartite graph G is k∗-laceable if there exists a k∗-container between any two vertices u, v from different partite set of G. A bipartite graph G with connectivity k is super laceable if it is i∗-laceable for all i?k. A bipartite graph G with connectivity k is f-edge fault-tolerant super laceable if GF is i∗-laceable for any 1?i?kf and for any edge subset F with |F|=f<k−1. In this paper, we prove that the hypercube graph Qr is super laceable. Moreover, Qr is f-edge fault-tolerant super laceable for any f?r−2.  相似文献   

16.
For a positive integer k, a graph G is k-ordered hamiltonian if for every ordered sequence of k vertices there is a hamiltonian cycle that encounters the vertices of the sequence in the given order. In this paper, we show that if G is a ⌊3k/2⌋-connected graph of order n?100k, and d(u)+d(v)?n for any two vertices u and v with d(u,v)=2, then G is k-ordered hamiltonian. Our result implies the theorem of G. Chen et al. [Ars Combin. 70 (2004) 245-255] [1], which requires the degree sum condition for all pairs of non-adjacent vertices, not just those distance 2 apart.  相似文献   

17.
For a positive integer c, a c-vertex-ranking of a graph G=(V,E) is a labeling of the vertices of G with integers such that, for any label i, deletion of all vertices with labels >i leaves connected components, each having at most c vertices with label i. The c-vertex-ranking problem is to find a c-vertex-ranking of a given graph using the minimum number of ranks. In this paper we give an optimal parallel algorithm for solving the c-vertex-ranking problem on trees in O(log2n) time using linear number of operations on the EREW PRAM model.  相似文献   

18.
《国际计算机数学杂志》2012,89(9):1131-1137

Given an undirected graph G = (V, E), with vertex set V and edge set E, the pseudoachromatic number ψ(G) of the graph G is the maximum number of colors used to color the vertices in such a way that, for any given pair of colors i, j there exists an edge e = (u, v) ∈ E(G) such that u is colored i and v is colored j. In this paper we give a complete characterization of when the ψ of the join of any two graphs is the sum of the ψ of the two graphs.  相似文献   

19.
Suppose the vertices of a graph G were labeled arbitrarily by positive integers, and let S(v) denote the sum of labels over all neighbors of vertex v. A labeling is lucky if the function S is a proper coloring of G, that is, if we have S(u)≠S(v) whenever u and v are adjacent. The least integer k for which a graph G has a lucky labeling from the set {1,2,…,k} is the lucky number of G, denoted by η(G).Using algebraic methods we prove that η(G)?k+1 for every bipartite graph G whose edges can be oriented so that the maximum out-degree of a vertex is at most k. In particular, we get that η(T)?2 for every tree T, and η(G)?3 for every bipartite planar graph G. By another technique we get a bound for the lucky number in terms of the acyclic chromatic number. This gives in particular that for every planar graph G. Nevertheless we offer a provocative conjecture that η(G)?χ(G) for every graph G.  相似文献   

20.
Let λ(G) be the edge connectivity of G. The direct product of graphs G and H is the graph with vertex set V(G×H)=V(GV(H), where two vertices (u1,v1) and (u2,v2) are adjacent in G×H if u1u2E(G) and v1v2E(H). We prove that λ(G×Kn)=min{n(n−1)λ(G),(n−1)δ(G)} for every nontrivial graph G and n?3. We also prove that for almost every pair of graphs G and H with n vertices and edge probability p, G×H is k-connected, where k=O(2(n/logn)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号