首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spanning tree T of a graph G=(V,E) is called a locally connected spanning tree if the set of all neighbors of v in T induces a connected subgraph of G for all vV. The problem of recognizing whether a graph admits a locally connected spanning tree is known to be NP-complete even when the input graphs are restricted to chordal graphs. In this paper, we propose linear time algorithms for finding locally connected spanning trees in cographs, complements of bipartite graphs and doubly chordal graphs, respectively.  相似文献   

2.
k-tuple domination in graphs   总被引:1,自引:0,他引:1  
In a graph G, a vertex is said to dominate itself and all of its neighbors. For a fixed positive integer k, the k-tuple domination problem is to find a minimum sized vertex subset in a graph such that every vertex in the graph is dominated by at least k vertices in this set. The current paper studies k-tuple domination in graphs from an algorithmic point of view. In particular, we give a linear-time algorithm for the k-tuple domination problem in strongly chordal graphs, which is a subclass of chordal graphs and includes trees, block graphs, interval graphs and directed path graphs. We also prove that the k-tuple domination problem is NP-complete for split graphs (a subclass of chordal graphs) and for bipartite graphs.  相似文献   

3.
A set S?V is a power dominating set (PDS) of a graph G=(V,E) if every vertex and every edge in G can be observed based on the observation rules of power system monitoring. The power domination problem involves minimizing the cardinality of a PDS of a graph. We consider this combinatorial optimization problem and present a linear time algorithm for finding the minimum PDS of an interval graph if the interval ordering of the graph is provided. In addition, we show that the algorithm, which runs in Θ(nlogn) time, where n is the number of intervals, is asymptotically optimal if the interval ordering is not given. We also show that the results hold for the class of circular-arc graphs.  相似文献   

4.
Given a class C of graphs, a graph G=(V,E) is said to be a C-probe graph if there exists a stable (i.e., independent) set of vertices XV and a set F of pairs of vertices of X such that the graph G=(V,EF) is in the class C. Recently, there has been increasing interest and research on a variety of C-probe graph classes, such as interval probe graphs, chordal probe graphs and chain probe graphs.In this paper we focus on chordal-bipartite probe graphs. We prove a structural result that if B is a bipartite graph with no chordless cycle of length strictly greater than 6, then B is chordal-bipartite probe if and only if a certain “enhanced” graph B is a chordal-bipartite graph. This theorem is analogous to a result on interval probe graphs in Zhang (1994) [18] and to one on chordal probe graphs in Golumbic and Lipshteyn (2004) [11].  相似文献   

5.
Let G=(V,E) be a simple graph without isolated vertices. A vertex set SV is a paired-dominating set if every vertex in VS has at least one neighbor in S and the induced subgraph G[S] has a perfect matching. In this paper, we present a linear-time algorithm to find a minimum paired-dominating set in strongly chordal graphs if the strong (elimination) ordering of the graph is given in advance.  相似文献   

6.
A bipartite graph G=(U,W,E) with vertex set V=UW is convex if there exists an ordering of the vertices of W such that for each uU, the neighbors of u are consecutive in W. A compact representation of a convex bipartite graph for specifying such an ordering can be computed in O(|V|+|E|) time. The paired-domination problem on bipartite graphs has been shown to be NP-complete. The complexity of the paired-domination problem on convex bipartite graphs has remained unknown. In this paper, we present an O(|V|) time algorithm to solve the paired-domination problem on convex bipartite graphs given a compact representation. As a byproduct, we show that our algorithm can be directly applied to solve the total domination problem on convex bipartite graphs in the same time bound.  相似文献   

7.
For a graph G=(V,E), a subset DV is an r-hop dominating set if every vertex uVD is at most r-hops away from D. It is a 2-connected r-hop dominating set if the subgraph of G induced by D is 2-connected. In this paper, we present two approximation algorithms to compute minimum 2-connected r-hop dominating set. The first one is a greedy algorithm using ear decomposition of 2-connected graphs. This algorithm is applicable to any 2-connected general graph. The second one is a three-phase algorithm which is only applicable to unit disk graphs. For both algorithms, performance ratios are given.  相似文献   

8.
The Power Dominating Set problem is an extension of the well-known domination problem on graphs in a way that we enrich it by a second propagation rule: given a graph G(V,E), a set P?V is a power dominating set if every vertex is observed after the exhaustive application of the following two rules. First, a vertex is observed if vP or it has a neighbor in P. Secondly, if an observed vertex has exactly one unobserved neighbor u, then also u will be observed, as well. We show that Power Dominating Set remains $\mathcal{NP}$ -hard on cubic graphs. We design an algorithm solving this problem in time $\mathcal{O}^{*}(1.7548^{n})$ on general graphs, using polynomial space only. To achieve this, we introduce so-called reference search trees that can be seen as a compact representation of usual search trees, providing non-local pointers in order to indicate pruned subtrees.  相似文献   

9.
In a graph G=(V,E), a subset FV(G) is a feedback vertex set of G if the subgraph induced by V(G)?F is acyclic. In this paper, we propose an algorithm for finding a small feedback vertex set of a star graph. Indeed, our algorithm can derive an upper bound to the size of the feedback vertex set for star graphs. Also by applying the properties of regular graphs, a lower bound can easily be achieved for star graphs.  相似文献   

10.
A minus (respectively, signed) clique-transversal function of a graph G=(V,E) is a function (respectively, {−1,1}) such that uCf(u)?1 for every maximal clique C of G. The weight of a minus (respectively, signed) clique-transversal function of G is f(V)=vVf(v). The minus (respectively, signed) clique-transversal problem is to find a minus (respectively, signed) clique-transversal function of G of minimum weight. In this paper, we present a unified approach to these two problems on strongly chordal graphs. Notice that trees, block graphs, interval graphs, and directed path graphs are subclasses of strongly chordal graphs. We also prove that the signed clique-transversal problem is NP-complete for chordal graphs and planar graphs.  相似文献   

11.
An efficient dominating set (or perfect code) in a graph is a set of vertices the closed neighborhoods of which partition the vertex set of the graph. The minimum weight efficient domination problem is the problem of finding an efficient dominating set of minimum weight in a given vertex-weighted graph; the maximum weight efficient domination problem is defined similarly. We develop a framework for solving the weighted efficient domination problems based on a reduction to the maximum weight independent set problem in the square of the input graph. Using this approach, we improve on several previous results from the literature by deriving polynomial-time algorithms for the weighted efficient domination problems in the classes of dually chordal and AT-free graphs. In particular, this answers a question by Lu and Tang regarding the complexity of the minimum weight efficient domination problem in strongly chordal graphs.  相似文献   

12.
The NP-complete Power Dominating Set problem is an “electric power networks variant” of the classical domination problem in graphs: Given an undirected graph G=(V,E), find a minimum-size set P?V such that all vertices in V are “observed” by the vertices in P. Herein, a vertex observes itself and all its neighbors, and if an observed vertex has all but one of its neighbors observed, then the remaining neighbor becomes observed as well. We show that Power Dominating Set can be solved by “bounded-treewidth dynamic programs.” For treewidth being upper-bounded by a constant, we achieve a linear-time algorithm. In particular, we present a simplified linear-time algorithm for Power Dominating Set in trees. Moreover, we simplify and extend several NP-completeness results, particularly showing that Power Dominating Set remains NP-complete for planar graphs, for circle graphs, and for split graphs. Specifically, our improved reductions imply that Power Dominating Set parameterized by |P| is W[2]-hard and it cannot be better approximated than Dominating Set.  相似文献   

13.
Given a bipartite graph G=(V,W,E) with a bipartition {V,W} of a vertex set and an edge set E, a 2-layered drawing of G in the plane means that the vertices of V and W are respectively drawn as distinct points on two parallel lines and the edges as straight line segments. We consider the problem of counting the number of edge crossings. In this paper, we design two algorithms to this problem based on the dynamic programming and divide-and-conquer approaches. These algorithms run in O(n1n2) time and O(m) space and in O(min{n1n2,|E|log(min{|V|,|W|})}) time and O(m) space, respectively. Our algorithms outperform the previously fastest Θ(|E|log(min{|V|,|W|})) time algorithm for dense graphs.  相似文献   

14.
A module is a set of vertices H of a graph G=(V,E) such that each vertex of V?H is either adjacent to all vertices of H or to none of them. A homogeneous set is a nontrivial module. A graph Gs=(V,Es) is a sandwich for a pair of graphs Gt=(V,Et) and G=(V,E) if EtEsE. In a recent paper, Tang et al. [Inform. Process. Lett. 77 (2001) 17-22] described an O(Δn2) algorithm for testing the existence of a homogeneous set in sandwich graphs of Gt=(V,Et) and G=(V,E) and then extended it to an enumerative algorithm computing all these possible homogeneous sets. In this paper, we invalidate this latter algorithm by proving there are possibly exponentially many such sets, even if we restrict our attention to strong modules. We then give a correct characterization of a homogeneous set of a sandwich graph.  相似文献   

15.
Finding a dominating set of minimum cardinality is an NP-hard graph problem, even when the graph is bipartite. In this paper we are interested in solving the problem on graphs having a large independent set. Given a graph G with an independent set of size z, we show that the problem can be solved in time O(2nz), where n is the number of vertices of G. As a consequence, our algorithm is able to solve the dominating set problem on bipartite graphs in time O(2n/2). Another implication is an algorithm for general graphs whose running time is O(n1.7088).  相似文献   

16.
Let G(VE) be a connected undirected graph with n vertices and m edges, where each vertex v is associated with a cost C(v) and each edge e = (uv) is associated with two weights, W(u → v) and W(v → u). The issue of assigning an orientation to each edge so that G becomes a directed graph is resolved in this paper. Determining a scheme to assign orientations of all edges such that maxxV{C(x)+∑xzW(xz)} is minimized is the objective. This issue is called the edge-orientation problem (the EOP). Two variants of the EOP, the Out-Degree-EOP and the Vertex-Weighted EOP, are first proposed and then efficient algorithms for solving them on general graphs are designed. Ascertaining that the EOP is NP-hard on bipartite graphs and chordal graphs is the second result. Finally, an O(n log n)-time algorithm for the EOP on trees is designed. In general, the algorithmic results in this paper facilitate the implementation of the weighted fair queuing (WFQ) on real networks. The objective of the WFQ is to assign an effective weight for each flow to enhance link utilization. Our findings consequently can be easily extended to other classes of graphs, such as cactus graphs, block graphs, and interval graphs.  相似文献   

17.
In a graph, a vertex is simplicial if its neighborhood is a clique. For an integer k≥1, a graph G=(VG,EG) is the k-simplicial power of a graph H=(VH,EH) (H a root graph of G) if VG is the set of all simplicial vertices of H, and for all distinct vertices x and y in VG, xyEG if and only if the distance in H between x and y is at most k. This concept generalizes k-leaf powers introduced by Nishimura, Ragde and Thilikos which were motivated by the search for underlying phylogenetic trees; k-leaf powers are the k-simplicial powers of trees. Recently, a lot of work has been done on k-leaf powers and their roots as well as on their variants phylogenetic roots and Steiner roots. For k≤5, k-leaf powers can be recognized in linear time, and for k≤4, structural characterizations are known. For k≥6, the recognition and characterization problems of k-leaf powers are still open. Since trees and block graphs (i.e., connected graphs whose blocks are cliques) have very similar metric properties, it is natural to study k-simplicial powers of block graphs. We show that leaf powers of trees and simplicial powers of block graphs are closely related, and we study simplicial powers of other graph classes containing all trees such as ptolemaic graphs and strongly chordal graphs.  相似文献   

18.
We consider the following NP-hard problem: given a connected graph G=(V,E) and a link set E on V disjoint to E, find a minimum size subset of edges FE such that (V,EF) is 2-edge-connected. In G. Even et al. (2005) [2] we presented a 1.8-approximation for the problem. In this paper we improve the ratio to 1.5.  相似文献   

19.
In this paper we present unified methods to solve the minus and signed total domination problems for chordal bipartite graphs and trees in O(n2) and O(n+m) time, respectively. We also prove that the decision problem for the signed total domination problem on doubly chordal graphs is NP-complete. Note that bipartite permutation graphs, biconvex bipartite graphs, and convex bipartite graphs are subclasses of chordal bipartite graphs.  相似文献   

20.
Given a graph G=(V,E), a vertex v of G is a median vertex if it minimizes the sum of the distances to all other vertices of G. The median problem consists of finding the set of all median vertices of G. In this note, we present self-stabilizing algorithms for the median problem in partial rectangular grids and relatives. Our algorithms are based on the fact that partial rectangular grids can be isometrically embedded into the Cartesian product of two trees, to which we apply the algorithm proposed by Antonoiu and Srimani (J. Comput. Syst. Sci. 58:215–221, 1999) and Bruell et al. (SIAM J. Comput. 29:600–614, 1999) for computing the medians in trees. Then we extend our approach from partial rectangular grids to a more general class of plane quadrangulations. We also show that the characterization of medians of trees given by Gerstel and Zaks (Networks 24:23–29, 1994) extends to cube-free median graphs, a class of graphs which includes these quadrangulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号