首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The problem to find a 4-edge-coloring of a 3-regular graph is solvable in polynomial time but an analogous problem for 3-edge-coloring is NP-hard. To make the gap more precise, we study complexity of approximation algorithms for invariants measuring how far is a 3-regular graph from having a 3-edge-coloring. We show that it is an NP-hard problem to approximate such invariants with an error O(n1−ε), where n denotes the order of the graph and 0<ε<1 is a constant.  相似文献   

5.
The Max Edge-Coloring problem asks for a proper edge-coloring of an edge-weighted graph minimizing the sum of the weights of the heaviest edges in the color classes. In this paper we present a PTAS for trees and a 1.74-approximation algorithm for bipartite graphs; we also adapt the last algorithm to one for general graphs of the same, asymptotically, approximation ratio.  相似文献   

6.
The computational complexity of a number of problems concerning induced structures in graphs is studied, and compared with the complexity of corresponding problems concerning non-induced structures. The effect on these problems of restricting the input to planar graphs is also considered. The principal results include: (1) Induced Maximum Matching and Induced Directed Path are NP-complete for planar graphs, (2) for every fixed graphH, InducedH-Minor Testing can be accomplished for planar graphs in time0(n), and (3) there are graphsH for which InducedH-Minor Testing is NP-complete for unrestricted input. Some useful structural theorems concerning induced minors are presented, including a bound on the treewidth of planar graphs that exclude a planar induced minor.The research of the first author was supported by the U.S. Office of Naval Research under Contract N00014-88-K-0456, by the U.S. National Science Foundation under Grant MIP-8603879, and by the National Science and Engineering Research Council of Canada. The second author acknowledges the support of the U.S. Office of Naval Research when visiting the University of Idaho in spring 1990. Some results were also obtained during a visit to the University of Cologne in fall 1990.  相似文献   

7.
The densest k-subgraph problem asks for a k-vertex subgraph with the maximum number of edges. This problem is NP-hard on bipartite graphs, chordal graphs, and planar graphs. A 3-approximation algorithm is known for chordal graphs. We present -approximation algorithms for proper interval graphs and bipartite permutation graphs. The latter result relies on a new characterisation of bipartite permutation graphs which may be of independent interest.  相似文献   

8.
二分图受约束最小点覆盖问题作为一个NP-完全问题,无法在多项式时间内得到最优解,除非P=NP。基于此,本文提出了一种基于链暗示技术的二分图受约束最小点覆盖问题的近似算法,具体为:当二分图受约束最小点覆盖问题实例中存在满足约束条件的最小点覆盖(ku,kl)时,对任意给定的近似率δ=1+ε〉1,一定可以找到一个受约束近似点覆盖(ku,kl),对应的近似率为max{ku^*/ku,kl^*/kl}≤1+ε,整个近似算法的运行时间复杂度为O(22/ε)。显然,它是二分图受约束最小点覆盖问题的一个多项式时间近似方案(polynomial time approximation scheme,PTAS算法)。  相似文献   

9.
The densest k-subgraph (DkS) problem asks for a k-vertex subgraph of a given graph with the maximum number of edges. The DkS problem is NP-hard even for special graph classes including bipartite, planar, comparability and chordal graphs, while no constant approximation algorithm is known for any of these classes. In this paper we present a 3-approximation algorithm for the class of chordal graphs. The analysis of our algorithm is based on a graph theoretic lemma of independent interest.  相似文献   

10.
Given a graph GG, an integer kk, and a demand set D={(s1,t1),…,(sl,tl)}D={(s1,t1),,(sl,tl)}, the kk-Steiner Forest problem finds a forest in graph GG to connect at least kk demands in DD such that the cost of the forest is minimized. This problem was proposed by Hajiaghayi and Jain in SODA’06. Thereafter, using a Lagrangian relaxation technique, Segev et al. gave the first approximation algorithm to this problem in ESA’06, with performance ratio O(n2/3logl)O(n2/3logl). We give a simpler and faster approximation algorithm to this problem with performance ratio O(n2/3logk)O(n2/3logk) via greedy approach, improving the previously best known ratio in the literature.  相似文献   

11.
We investigate the push-relabel algorithm for solving the problem of finding a maximum cardinality matching in a bipartite graph in the context of the maximum transversal problem. We describe in detail an optimized yet easy-to-implement version of the algorithm and fine-tune its parameters. We also introduce new performance-enhancing techniques. On a wide range of real-world instances, we compare the push-relabel algorithm with state-of-the-art algorithms based on augmenting paths and pseudoflows. We conclude that a carefully tuned push-relabel algorithm is competitive with all known augmenting path-based algorithms, and superior to the pseudoflow-based ones.  相似文献   

12.
Covering problems are fundamental classical problems in optimization, computer science and complexity theory. Typically an input to these problems is a family of sets over a finite universe and the goal is to cover the elements of the universe with as few sets of the family as possible. The variations of covering problems include well-known problems like Set Cover, Vertex Cover, Dominating Set and Facility Location to name a few. Recently there has been a lot of study on partial covering problems, a natural generalization of covering problems. Here, the goal is not to cover all the elements but to cover the specified number of elements with the minimum number of sets. In this paper we study partial covering problems in graphs in the realm of parameterized complexity. Classical (non-partial) version of all these problems has been intensively studied in planar graphs and in graphs excluding a fixed graph H as a minor. However, the techniques developed for parameterized version of non-partial covering problems cannot be applied directly to their partial counterparts. The approach we use, to show that various partial covering problems are fixed parameter tractable on planar graphs, graphs of bounded local treewidth and graph excluding some graph as a minor, is quite different from previously known techniques. The main idea behind our approach is the concept of implicit branching. We find implicit branching technique to be interesting on its own and believe that it can be used for some other problems.  相似文献   

13.
We study extremal questions on induced matchings in certain natural graph classes. We argue that these questions should be asked for twinless graphs, that is graphs not containing two vertices with the same neighborhood. We show that planar twinless graphs always contain an induced matching of size at least n/40 while there are planar twinless graphs that do not contain an induced matching of size (n+10)/27. We derive similar results for outerplanar graphs and graphs of bounded genus. These extremal results can be applied to the area of parameterized computation. For example, we show that the induced matching problem on planar graphs has a kernel of size at most 40k that is computable in linear time; this significantly improves the results of Moser and Sikdar (2007). We also show that we can decide in time O(k91+n) whether a planar graph contains an induced matching of size at least k.  相似文献   

14.
Set Packing参数化计数问题即在一个3-Set Packing实例中统计所有大小为k的不同packing的个数。首先证明了该问题的计算复杂性是#W[1]-难的,表明该问题不大可能存在固定参数可解的精确算法(除非#W[1]=FPT)。然后,通过拓展3-D Matching参数化计数问题的算法对3-Set Packing参数化计数问题提出了一个基于Monte-Carlo自适应覆盖算法和着色技术的随机近似算法。  相似文献   

15.
On approximation algorithms for the terminal Steiner tree problem   总被引:1,自引:0,他引:1  
The terminal Steiner tree problem is a special version of the Steiner tree problem, where a Steiner minimum tree has to be found in which all terminals are leaves. We prove that no polynomial time approximation algorithm for the terminal Steiner tree problem can achieve an approximation ratio less than (1−o(1))lnn unless NP has slightly superpolynomial time algorithms. Moreover, we present a polynomial time approximation algorithm for the metric version of this problem with a performance ratio of 2ρ, where ρ denotes the best known approximation ratio for the Steiner tree problem. This improves the previously best known approximation ratio for the metric terminal Steiner tree problem of ρ+2.  相似文献   

16.
The all-bidirectional-edges problem is to find an edge-labeling of an undirected networkG=(V, E), with a source and a sink, such that an edgee=uv inE is labeled u, v or u, u (or both) depending on the existence of a (simple) path from the source to the sink traversinge, that visits the verticesu andv in the orderu, v orv, u respectively. The best-known algorithm for this problem requiresO(¦V¦·¦E¦) time [5]. We show that the problem is solvable optimally on a planar graph.  相似文献   

17.
The class of bipartite permutation graphs is the intersection of two well known graph classes: bipartite graphs and permutation graphs. A complete bipartite decomposition of a bipartite permutation graph is proposed in this note. The decomposition gives a linear structure of bipartite permutation graphs, and it can be obtained in O(n) time, where n is the number of vertices. As an application of the decomposition, we show an O(n) time and space algorithm for finding a longest path in a bipartite permutation graph.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号