首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of acidification and heat treatment of raw red mud (RM) and fly ash (FA) on the sorption of phosphate was studied in parallel experiments. The result shows that a higher efficiency of phosphate removal was acquired by the activated samples than by the raw ones. The sample prepared by using the RM stirred with 0.25 M HCl for 2h (RM0.25), as well as another sample prepared by heating the RM at 700 degrees C for 2h (RM700), registered the maximum removal of phosphate (99% removal of phosphate). This occurred when they were used in the phosphate sorption studies conducted at pH 7.0 and 25 degrees C with the initial PO(4)(3-) concentration of 155 mg P/l. The FA samples treated in the same way described above can achieve 7.0 and 8.2 mg P/l phosphate removal for FA0.25 and FA700 respectively, corresponding to 45.2% and 52.9% removal. The activated materials performed higher phosphate removal over broader pH range compared with the raw ones. The influences of various factors, such as initial pH and initial phosphate concentration on the sorption capacity were also studied in batch equilibration technique. Solution pH significantly influenced the sorption. Each sample achieved the maximal removal of phosphate at pH 7.0. The amount of phosphate removal increased with the solute concentration. The Freundlich and Langmuir models were used to simulate the sorption equilibrium. The results indicate that the Langmuir model has a better correlation with the experimental data than the Freundlich model.  相似文献   

2.
Phosphate removal from wastewater using red mud   总被引:6,自引:0,他引:6  
Red mud, a waste residue of alumina refinery, has been used to develop effective adsorbents to remove phosphate from aqueous solution. Acid and acid-thermal treatments were employed to treat the raw red mud. The effects of different treatment methods, pH of solution and operating temperature on adsorption have been examined in batch experiments. It was found that all activated red mud samples show higher surface area and total pore volume as well as higher adsorption capacity for phosphate removal. The red mud with HCl treatment shows the highest adsorption capacity among all the red mud samples, giving adsorption capacity of 0.58 mg P/g at pH 5.5 and 40 degrees C. The adsorption capacity of the red mud adsorbents decreases with increase of pH. At pH 2, the red mud with HCl treatment exhibits adsorption of 0.8 mg P/g while the adsorption can be lowered to 0.05 mg P/g at pH 10. However, the adsorption is improved at higher temperature by increasing 25% from 30 to 40 degrees C. The kinetic studies of phosphate adsorption onto red mud indicate that the adsorption mainly follows the parallel first-order kinetics due to the presence of two acidic phosphorus species, H(2)PO(4)(-) and HPO(4)(2-). An analysis of the adsorption data indicates that the Freundlich isotherm provides a better fitting than the Langmuir model.  相似文献   

3.
Adsorption of arsenate on synthetic goethite from aqueous solutions   总被引:2,自引:0,他引:2  
Goethite was synthesized from the oxidation of ferrous carbonate precipitated from the double decomposition of ferrous sulfate doped with sodium lauryl sulfate (an anionic surfactant) and sodium carbonate in aqueous medium. The specific surface area and pore volume of goethite were 103 m(2) g(-1) and 0.50 cm(3) g(-1). Batch experiments were conducted to study the efficacy of removal of arsenic(V) using this goethite as adsorbent for solutions with 5-25 mg l(-1) of arsenic(V). The nature of adsorption was studied by zeta-potential measurements. The adsorption process followed by Langmuir isotherm and diffusion coefficient of arsenate was determined to be 3.84 x 10(11)cm(2)s(-1). The optimum pH of adsorption was found to be 5.0. The kinetics of adsorption was evaluated with 10 mg l(-1) and 20 mg l(-1) of As(V) solutions and activation energy of adsorption, as calculated from isoconversional method was in the range of 20 kJ mol(-1) to 43 kJ mol(-1). This suggests that the adsorption process is by diffusion at the initial phase and later through chemical control. FT-IR characterization of arsenic treated goethite indicated the presence of both AsOFe and AsO groups and supported the concept of surface complex formation.  相似文献   

4.
Adsorption of copper and zinc from aqueous solutions by using natural clay   总被引:6,自引:0,他引:6  
In this study, removal of copper (Cu(2+)) and zinc (Zn(2+)) from aqueous solutions is investigated using Cankiri bentonite, a natural clay. During the removal process, batch technique is used, and the effects of pH, clay amount, heavy metal concentration and agitation time on adsorption efficiency are studied. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms are applied in order to determine the efficiency of natural clay used as an adsorbent. Results show that all isotherms are linear. It is determined that adsorption of Cu(2+) and Zn(2+) is well-fitted by the second order reaction kinetic. In addition, calculated and experimental heavy metal amounts adsorbed by the unit clay mass are too close to each other. It is concluded that natural clay can be used as an effective adsorbent for removing Cu(2+) and Zn(2+) from aqueous solutions.  相似文献   

5.
The objective of this study is to remove the congo red (CR) anionic dye, from water by using the acid activated red mud in batch adsorption experiments. The effects of contact time, pH, adsorbent dosage and initial dye concentration on the adsorption were investigated. The pH of the dye solution strongly affected the chemistry of both the dye molecules and activated red mud in an aqueous solution. The effective pH was 7.0 for adsorption on activated red mud. It was found that the sufficient time to attain equilibrium was 90 min. The adsorption isotherms were analyzed using the Langmuir, the Freundlich, and the three parameter Redlich-Peterson isotherms. The Langmuir isotherm was the best-fit adsorption isotherm model for the experimental data obtained from the non-linear chi-square statistic test.  相似文献   

6.
In this study, the adsorption conditions of Cu(II), Pb(II) and Cd(II) metal ions onto sporopollenin have been studied. The different variables effecting the sorption capacity such as pH of the solution, adsorption time, initial metal ion concentration and temperature have been investigated. Adsorption isotherms correlated well with the Freundlich type adsorption isotherm and adsorption capacities were found to be 0.0195, 0.0411 and 0.0146 mmol g(-1) for Cu(II), Pb(II) and Cd(II) metal ions, respectively. Experimental data were also evaluated to find out kinetic characteristics of the adsorption process. Adsorption processes for three target heavy metal ions were found to follow pseudo-second order type adsorption kinetics. Intraparticle diffusion was found to take part in adsorption processes but it could not be accepted as the primary rate-determining step. The mean free energies of adsorption (E) were found to be between 8 and 16 kJ mol(-1) for the metal ions studied and therefore adsorption mechanism for the adsorbent was explained as an ion-exchange process. But it was observed that chelating effect is also playing an important role in the adsorption of metal ions onto sporopollenin. Thermodynamic parameters, DeltaH degrees , DeltaS degrees and DeltaG degrees were also calculated from graphical interpretation of the experimental data. Standard heats of adsorption (DeltaH degrees ) were found to be endothermic and DeltaS degrees values were calculated to be positive for the adsorption of Cu(II), Pb(II) and Cd(II) ions onto the adsorbent. Negative DeltaG degrees values indicated that adsorption process for these three metal ions onto sporopollenin is spontaneous.  相似文献   

7.
Microwave-assisted synthesis of the cellulose-carbonated hydroxyapatite nanocomposites (CCHA) with CHA nanostructures dispersed in the cellulose matrix was carried out by using cellulose solution, CaCl(2), and NaH(2)PO(4). The cellulose solution was previously prepared by the dissolution of microcrystalline cellulose in NaOH-urea aqueous solution. Study was carried out to evaluate the feasibility of synthetic CCHA for As(V) removal from aqueous solution. Batch experiments were performed to investigate effects of various experimental parameters such as contact time (5 min - 8h), initial As(V) concentration (1-50mg/L), temperature (25, 35 and 45°C), pH (2-10) and the presence of competing anions on As(V) adsorption on the synthetic CCHA. Kinetic data reveal that the uptake rate of As(V) was rapid at the beginning and equilibrium was achieved within 1h. The adsorption process was well described by pseudo-first-order kinetics model. The adsorption data better fitted Langmuir isotherm. The maximum adsorption capacity calculated from Langmuir isotherm model was up to 12.72 mg/g. Thermodynamic study indicates an endothermic nature of adsorption and a spontaneous and favorable process. The optimum pH for As(V) removal was broad, ranging from 4 to 8. The As(V) adsorption was impeded by the presence of SiO(3)(2-), followed by PO(4)(3-) and NO(3)(-). The adsorption process appeared to be controlled by the chemical process.  相似文献   

8.
In this study, the MgCl2/red mud system (MRM) was used to investigate the color removal efficiency of dye solutions. Parameters such as the effect of the dosage of red mud (RM) and MgCl2 have been studied. The effect of pH on the conversion rate of Mg2+ has also been studied. The color removal efficiency of MRM was compared with that of PAC/RM and PAC/NaOH. Meanwhile, the color removal efficiency of RM was compared with that of NaOH. The results show that the MRM system can remove more than 98% of the coloring material at a dosage of 25 g RM/L dye solution and a volume of 1.5 mL MgCl2/L dye solution in the decolorization process of reactive dye, acid dye and direct dye. The color removal efficiency was better than PAC/RM and PAC/NaOH system. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicated that both models provide the best correlation of the experimental data. The decolorization mechanism of MRM was discussed, too. The MRM system was a viable alternative to some of the more conventional forms of chemical treatment of dye solutions and also provided another way to make use of industrial waste red mud.  相似文献   

9.
In this study biosorption potential of pre-treated arca shell biomass for lead, copper, nickel, cobalt and cesium was explored from the artificially prepared solution containing known amount of metals. The effects of pH, initial concentration, biosorbent dosage and contact time were studied in batch experiments. Effects of common ions like sodium, potassium, calcium and magnesium on the sorption capacity of pre-treated arca biomasses were also studied. To analyse the homogeneity of the biomaterial, experiments were performed for eight lots arca shell biomass for all the studies elements and it was observed that relative standard deviation in uptake capacity was within 10% for all elements. At equilibrium, the maximum total uptake by shell biomaterial was 18.33+/-0.44, 17.64+/-0.31, 9.86+/-0.17, 3.93+/-0.11 and 7.82+/-0.36 mg/g for lead, copper, nickel, cesium and cobalt, respectively, under the optimised condition of pH, initial concentration, biosorbent dose and contact time. Effect of all the common ions jointly up to concentration of 50 ppm was negligible for all the elements but at higher levels the cations affects the uptake capacity. Sorption isotherms were studied to explain the removal mechanism of both elements by fitting isotherms data into Lagergren, Freundlich and Langmuir equations. Halls separation factor estimated under optimised condition also favours the sorption potential of these elements using arca shell biomass. Arca shell biomass can be effectively and efficiently employed for removal of studied elements after optimisation of parameters.  相似文献   

10.
Dolochar, a waste material generated in sponge iron industry, is processed and put to test as an adsorbent for removal of Cd(II) and Cr(VI) ions from aqueous solutions. The dolochar samples were characterised to determine the different phases and their distribution by reflection microscopy. The analysis indicated that the sample consists of metallic iron, fused carbon, and Ca-Mg bearing phases (Ca-Mg-silicate-oxide) along with lots of voids and pores. The fixed carbon (FC) content of the material is 13.8% with a Langmuir surface area of 81.6 m2/g and micropore area of 34.1 m2/g. Batch adsorption experiments have been conducted to study the sorption behaviour of Cd(II) and Cr(VI) ions on dolochar as a function of particle size, contact time, adsorbent dosages, pH and temperature. It is observed that higher pH and temperature enhances sorption of Cd(II) ions. In contrast, the adsorption for Cr(VI) is found to be better in acidic pH in comparison to alkaline media. The equilibrium adsorption isotherm data are tested by applying both Langmuir and Freundlich isotherm models. It is observed that Langmuir isotherm model fitted better compared to the Freundlich model indicating monolayer adsorption. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° indicate the effectiveness of dolochar to remove Cd(II) and Cr(VI) ions from aqueous solution. The kinetics of adsorption is found to better fit to pseudo second order reaction.  相似文献   

11.
This paper describes the removal of fluoride from water using granular red mud (GRM) according to batch and column adsorption techniques. For the batch technique, the experiments demonstrated that maximum fluoride removal was obtained at a pH of 4.7 and it took 6h to attain equilibrium and equilibrium time did not depend upon the initial fluoride concentration. Kinetics data were fitted with pseudo-second-order model. The Redlich-Peterson and Freundlich isotherm models better represented the adsorption data in comparison to the Langmuir model. Column experiments were carried out under a constant influent concentration and bed depth, and different flow rates. The capacities of the breakthrough and exhaustion points decreased with increase of the flow rate. Thomas model was applied to the experimental results. The modelled breakthrough curves were obtained, and they were in agreement with the corresponding experimental data. The column adsorption was reversal and the regeneration operation was accomplished by pumping 0.2M of NaOH through the loaded GRM-column.  相似文献   

12.
改性膨润土对溶液中Co2+、Mn2+的吸附研究   总被引:2,自引:0,他引:2  
以膨润土为原材料,盐酸为改性剂,制备改性膨润土。研究了改性膨润土的制备条件,其对重金属Co2+、Mn2+的吸附性能及对苯二甲酸(PTA)工业中的副产品对甲苯甲酸对吸附的影响。实验结果表明,盐酸的最佳改性浓度为1.5mol/L,改性膨润土在40℃的吸附能力最好,可达到12~14mg/g,经过热力学分析得出,改性膨润土对钴离子、锰离子的吸附方式均符合Langmuir吸附模型,PTA工业中的副产品对甲苯甲酸对吸附没有影响。  相似文献   

13.
Removal of fluoride from aqueous solution using protonated chitosan beads   总被引:5,自引:0,他引:5  
In the present study, chitosan in its more usable bead form has been chemically modified by simple protonation and employed as a most promising defluoridating medium. Protonated chitosan beads (PCB) showed a maximum defluoridation capacity (DC) of 1664mgF-/kg whereas raw chitosan beads (CB) possess only 52mgF-/kg. Sorption process was found to be independent of pH and altered in the presence of other co-existing anions. The sorbents were characterized using FTIR and SEM with EDAX analysis. The fluoride sorption on PCB follows both Freundlich and Langmuir isotherms. Thermodynamic parameters, viz., DeltaG degrees , DeltaH degrees DeltaS degrees and Ea indicate that the nature of fluoride sorption is spontaneous and endothermic. The sorption process follows pseudo-second-order and intraparticle diffusion kinetic models. 0.1M HCl was identified as the best eluent. The suitability of PCB has been tested with field samples collected from a nearby fluoride-endemic area.  相似文献   

14.
Removal of lead(II) and zinc(II) from aqueous solutions was studied using chemically modified distillation sludge of rose (Rosa centifolia) petals by pretreatment with NaOH, Ca(OH)(2), Al(OH)(3), C(6)H(6), C(6)H(5)CHO and HgCl(2). The adsorption capacity of biomass was found to be significantly improved. NaOH pretreated biomass showed remarkable increase in sorption capacity. Maximum adsorption of both metal ions was observed at pH 5. When Freundlich and Langmuir isotherms were tested, the latter had a better fit with the experimental data. The overall adsorption process was best described by pseudo second order kinetics. The thermodynamic assessment of the metal ion-Rosa centifolia biomass system indicated the feasibility and spontaneous nature of the process and DeltaG degrees was evaluated as ranging from -26.9501 to -31.652 KJmol(-1) and -24.1905 to -29.8923KJmol(-1) for lead(II) and zinc(II) sorption, respectively, in the concentration range 10-640mgL(-1). Distribution coefficient (D) showed that the concentration of metal ions at the sorbent-water interface is higher than the concentration in the continuous aqueous phase. Maximum adsorption capacity of biomass tends to be in the order Pb(II) (87.74mgg(-1))>Zn(II) (73.8mgg(-1)) by NaOH pretreated biomass.  相似文献   

15.
The basic oxygen furnace waste generated in steel plant has been used as a low cost adsorbent for the removal of Pb(II) from aqueous solution. The effect of pH, adsorbent dosage, initial metal ion concentration, contact time and temperature on adsorption process was studied in batch experiments. Results of the equilibrium experiments showed that the solution pH was the key factor affecting the adsorption characteristics. Optimum pH for the adsorption was found to be 5 with corresponding adsorbent dosage level of 5 g/L. The equilibrium was achieved within 1 h of contact time. Kinetics data were best described by pseudo second order model. The effective particle diffusion coefficient of Pb(II) is the order of 10−10 m2/s. The maximum uptake was 92.5 mg/g. The adsorption data can be well fitted by Freundlich isotherm. The result of the equilibrium studies showed that the solution pH was the key factor affecting the adsorption. External mass transfer analysis was also carried out for the adsorption process. The thermodynamic studies indicated that the adsorption is spontaneous and endothermic. The sorption energy (10.1745 kJ/mol) calculated from Dubinin–Radushkevich isotherm indicated that the adsorption process is chemical in nature. Desorption studies were carried out using dilute mineral acids to elucidate the mechanism of adsorption. Application studies were carried out considering the economic viewpoint of wastewater treatment plant operations.  相似文献   

16.
The potential application of red mud in the production of castings   总被引:3,自引:0,他引:3  
The bauxite industry in Jamaica is the third largest producer of alumina in the world. Because of the technological method of processing the bauxite, there is a large amount of the world's red mud residue being disposed in Jamaica. The magnitude of the industry's production of alumina and the red mud disposal problem as a by-product is of the same order.

This research was conducted to investigate the feasibility of using a mixture of red mud and the traditional silica sand to produce quality-casting component.

The porosity of the aluminium specimens obtained from the red mud castings showed that porosity increased up to two-fold, depending on the ratio of sand and red mud. For applications where optimum casting strength is important, the use of 100% red mud may be unsatisfactory.

Although there are other variables that affect the quality of the mixture of silica sand and red mud mould in castings, the result is very significant given the possibility of applying portions of red mud in other casting techniques.  相似文献   


17.
The red mud surface was treated with organosilane, organotitanate and organozirconate coupling agents respectively. The change in the surface was determined by IR spectroscopy and SEM. The effect of coupling agents concentration on the tensile and flexural strength of red mud-filled polyester resin has been studied. The efficacy of these coupling agents was discussed in relation to dispersion of red mud in unsaturated polyester resin and also by measuring performance of finished castings under both dry and wet conditions. It was found that organotitanate treated red mud-filled polyester composite gives better physico-mechanical properties than the control and other coupling agents treated red mud. Fractography of failed samples was also discussed in terms of their mechanical properties.  相似文献   

18.
A cancrinite-type zeolite was synthesized from Class C fly ash by molten-salt method. The product (ZFA) was used as the adsorbent for the arsenate removal from water. The adsorption equilibriums of arsenate are investigated on various adsorbents. ZFA showed a higher adsorption capacity (5.1 mg g(-1)) than activated carbon (4.0 mg g(-1)), silica gel (0.46 mg g(-1)), zeolite NaY (1.4 mg g(-1)), and zeolite 5A (4.1 mg g(-1)). The relatively higher adsorption capacity of ZFA than zeolite NaY and 5A was attributed to the low Si/Al ratio and the mesoporous secondary pore structure of ZFA. However, it was found that the adsorption capacity of zeolites were generally lower than activated alumina (16.6 mg g(-1)), which is ascribed to the small pores in zeolite frameworks. The adsorption capacity of ZFA was significantly improved after loaded by alumina via a wet-impregnation method. The modified ZFA (ZFA-Al(50)) with the optimum alumina loading showed an adsorption capacity of 34.5 mg g(-1), which was 2.1 times higher than activated alumina. The Toxicity Characteristic Leaching Procedure (TCLP) leachability tests indicated that the spent ZFA and alumina-modified ZFA complied with the EPA regulations for safe disposal.  相似文献   

19.
Mg-Fe–hexacyanoferrate (MgFeCF) and Ni-Fe–hexacyanoferrate (NiFeCF) were prepared and characterized using X-ray diffraction, Fourier-transform infrared spectroscopy spectra, and thermal analysis. The isotherm study showed that the sorption data fit with the Langmuir and Freundlich isotherms at 25?±?1°C. The sorption capacities of the prepared sorbents for MgFeCF and NiFeCF were found to be 154.32 and 180.83?mg?g?1, respectively. The adsorption of cesium by MgFeCF and NiFeCF is exothermic and spontaneous processes. Kinetic study indicated that the adsorption of cesium on MgFeCF and NiFeCF fits with the pseudo-second-order kinetic model. Desorption tests indicated that the sorption process is relatively stable. The new sorbents are promising efficient materials for cesium removal from aqueous solutions and sea water. The possibility of reusing the sorbents after stripping the metal ions was studied using 0.5?M HCl, and its efficiency for cesium removal was found to be 98% after five runs.  相似文献   

20.
为经济有效地利用我国排放量巨大的赤泥,消除其对环境的污染,在对赤泥进行化学组成、矿物组成和热稳定性分析基础上,提出以赤泥本身方解石为发泡剂,外加废玻璃、膨润土为硅铝调整剂制备赤泥陶粒的研究,并利用XRD和SEM方法对所得陶粒的组成和内部结构进行了分析.结果表明:废玻璃、膨润土单独调整或联合调整均可优化赤泥陶粒的性能,但...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号