首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
为了获得波长长、均匀性好和发光效率高的量子点,采用分子束外延(MBE)技术和S-K应变自组装模式,在GaAs(100)衬底上研究生长了三种InAs量子点。采用MBE配备的RHEED确定了工艺参数:As压维持在1.33×10-5Pa;InAs量子点和In0.2Ga0.8As的生长温度为500℃;565℃生长50nmGaAs覆盖层。生长了垂直耦合量子点(InAs1.8ML/GaAs5nm/InAs1.8ML)、阱内量子点(In0.2Ga0.8As5nm/InAs2.4ML/In0.2Ga0.8As5nm)和柱状岛量子点(InAs分别生长1.9、1.7、1.5ML,停顿20s后,生长间隔层GaAs2nm)。测得对应的室温光致发光(PL)谱峰值波长分别为1.038、1.201、1.087μm,半峰宽为119.6、128.0、72.2nm、相对发光强度为0.034、0.153、0.29。根据PL谱的峰位、半峰宽和相对发光强与量子点波长、均匀性和发光效率的对应关系,可知量子点波长有不同程度的增加、均匀性越来越好、发光效率显著增强。  相似文献   

2.
利用喇曼散射方法在77K温度下对不同淀积厚度的InAs/GaAs量子点材料进行了研究.在高于InAs体材料LO模的频率范围内观察到了量子点的喇曼特征峰,分析表明应变效应是影响QD声子频率的主要因素.实验显示,随着量子点层淀积厚度L的增加,InAs量子点的声子频率由于应变释放发生红移.在加入InAlAs应变缓冲层的样品中,类AlAs声子峰随L增大发生了蓝移,从侧面证实了InAs量子点层的应变释放过程.  相似文献   

3.
Structural and optical properties of InAs quantum dots (QDs) grown in a wide-bandgap Al0.3Ga0.7As matrix is studied. It is shown that a high temperature stability of optical properties can be achieved owing to deep localization of carriers in a matrix whose band gap is wider than that in GaAs. Specific features of QD formation were studied for different amounts of deposited InAs. A steady red shift of the QD emission peak as far as ∼1.18 μm with the effective thickness of InAs in Al0.3Ga0.7As increasing was observed at room temperature. This made it possible to achieve a much higher energy of exciton localization than for QDs in a GaAs matrix. To obtain the maximum localization energy, the QD sheet was overgrown with an InGaAs layer. The possibility of reaching the emission wavelength of ~1.3 μm is demonstrated. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 37, No. 5, 2003, pp. 578–582. Original Russian Text Copyright ? 2003 by Sizov, Samsonenko, Tsyrlin, Polyakov, Egorov, Tonkikh, Zhukov, Mikhrin, Vasil’ev, Musikhin, Tsatsul’nikov, Ustinov, Ledentsov.  相似文献   

4.
利用喇曼散射方法在77K温度下对不同淀积厚度的InAs/GaAs量子点材料进行了研究.在高于InAs体材料LO模的频率范围内观察到了量子点的喇曼特征峰,分析表明应变效应是影响QD声子频率的主要因素.实验显示,随着量子点层淀积厚度L的增加,InAs量子点的声子频率由于应变释放发生红移.在加入InAlAs应变缓冲层的样品中,类AlAs声子峰随L增大发生了蓝移,从侧面证实了InAs量子点层的应变释放过程.  相似文献   

5.
利用分子束外延技术在(100)和(113)B GaAs衬底上进行了有/无AlAs盖帽层量子点的生长,测量了其在4~100 K温度区间的PL光谱。通过对PL光谱的积分强度、峰值能量和半高宽进行分析进而研究载流子的热传输特性。无AlAs盖帽层的(113)B面量子点的PL光谱的热淬灭现象可以由载流子极易从量子点向浸润层逃逸来解释。然而,有AlAs盖帽层的(113)B量子点的PL热淬灭主要是由于载流子进入了量子点与势垒或者浸润层界面中的非辐射中心引起的。并且其PL的温度依存性与利用Varshni定律计算的体材料InAs的温度依存性吻合很好,表明载流子通过浸润层进行传输受到了抑制,由于AlAs引起的相分离机制(113)B量子点的浸润层已经消失或者减小了。(100)面有AlAs盖帽层的PL半高宽的温度依存性与无AlAs盖帽层的量子点大致相同,表明在相同外延条件下相分离机制在(100)面上不如(113)B面显著。  相似文献   

6.
GaAs/InAs quantum dot (QD) heterostructures prepared by metalloorganic chemical vapor deposition (MOCVD) are investigated. It is established that the introduction of isovalent bismuth doping during the growth of InAs QD layer results in the suppression of the nanocluster coalescence and favors the formation of more uniform QDs. Bismuth itself is virtually not incorporated into the dots, its role being mainly in limiting the migration mobility of atoms at the surface of the growing layer. A method for investigating the morphology of buried layers of InAs QDs in GaAs matrix by atomic-force microscopy is developed; it relies on the removal of the cap layer by selective chemical etching. The photoluminescence (PL) and photoelectric sensitivity spectra of the fabricated heterostructures and their relation to the morphology of the QD layer are studied. In doped structures, PL and selective photosensitivity owing to the QDs are observed at a wavelength of 1.41 µm with the linewidth of 43 meV at room temperature. Some of the morphological features and photoelectronic properties of the MOCVD-grown heterostructures are related to the formation of a transitional layer at the GaAs/InAs QD interface due to the diffusion-induced mixing of the components.  相似文献   

7.
We report on interplay of epitaxial growth phenomena and device performance in quantum dot (QD) and quantum wire (QWW) lasers based on self-organized nanostructures. InAs QDs are the most explored model system for basic understanding of "near-ideal" QD devices. Vertically-coupled growth of QDs and activated phase separation allow ultimate QD wavefunction engineering enabling GaAs lasers beyond 1400 nm and polarization-insensitive optical amplification. A feasibility of QD semiconductor optical amplifiers at terabit frequencies using InAs QDs is manifested at 1300 and 1500 nm. 1250-1300 nm QD GaAs edge emitters and VCSELs operate beyond 10 Gb/s with ultimate temperature robustness. Furthermore, temperature-insensitive operation without current or modulation voltage adjustment at >20 Gb/s is demonstrated up to ~90 degC. Light-emitting devices based on InGaN-QDs cover ultraviolet (UV) and visible blue-green spectral ranges. In these applications, InN-rich nanodomains prevent diffusion of nonequilibrium carries towards crystal defects and result in advanced degradation robustness of the devices. All the features characteristic to QDs are unambiguously confirmed for InGaN structures. For the red spectral range InGaAlP lasers are used. Growth on misoriented surfaces, characteristic to these devices, leads to nano-periodi- cally-step-bunched epitaxial surfaces resulting in two principal effects: 1) step-bunch-assisted alloy phase separation, leading to a spontaneous formation of ordered natural super lattices; 2) formation of quantum wire-like structures in the active region of the device. A high degree of polarization is revealed in the luminescence recorded from the top surface of the structures, in agreement with the QWW nature of the gain medium. QD and QWW lasers are remaining at the frontier of the modern optoelectronics penetrating into the mainstream applications in key industries.  相似文献   

8.
Electroluminescence and absorption spectra of a ten-layer InAs/GaAs quantum dot (QD) superlattice built in a two-section laser with sections of equal length is experimentally studied at room temperature. The thickness of the GaAs spacer layer between InAs QD layers, determined by transmission electron microscopy, is ∼6 nm. In contrast to tunnel-coupled QDs, QD superlattices amplify the optical polarization intensity and waveguide absorption of the TM mode in comparison with the TE mode. It is found that variations in the multimodal periodic spectrum of differential absorption of the QD superlattice structure are strongly linearly dependent on the applied electric field. Differential absorption spectra exhibit the Wannier-Stark effect in the InAs/GaAs QD superlattice, in which, in the presence of an external electric field, coupling of wave functions of miniband electron states is suppressed and a series of discrete levels called the Wannier-Stark ladder states are formed.  相似文献   

9.
An electron-microscopy study of GaAs structures, grown by molecular-beam epitaxy, containing two coupled layers of InAs semiconductor quantum dots (QDs) overgrown with a thin buffer GaAs layer and a layer of low-temperature-grown gallium arsenide has been performed. In subsequent annealing, an array of As nanoinclusions (metallic QDs) was formed in the low-temperature-grown GaAs layer. The variation in the microstructure of the samples during temperature and annealing conditions was examined. It was found that, at comparatively low annealing temperatures (400–500°C), the formation of the As metallic QDs array weakly depends on whether InAs semiconductor QDs are present in the preceding layers or not. In this case, the As metallic QDs have a characteristic size of about 2–3 nm upon annealing at 400°C and 4–5 nm upon annealing at 500°C for 15 min. Annealing at 600°C for 15 min in the growth setup leads to a coarsening of the As metallic QDs to 8–9 nm and to the formation of groups of such QDs in the area of the low-temperature-grown GaAs which is directly adjacent to the buffer layer separating the InAs semiconductor QDs. A more prolonged annealing at an elevated temperature (760°C) in an atmosphere of hydrogen causes a further increase in the As metallic QDs’ size to 20–25 nm and their spatial displacement into the region between the coupled InAs semiconductor QDs.  相似文献   

10.
Low‐dimensional III–V semiconductors have many advantages over other semiconductors; however, they are not particularly stable under physiological conditions. Hybridizing biocompatible organic molecules with advanced optical and electronic semiconductor devices based on quantum dots (QDs) and quantum wires could provide an efficient solution to realize stress‐free and nontoxic interfaces to attach larger functional biomolecules. Monitoring the modifications of the optical properties of the hybrid molecule–QD systems by grafting various types of air‐stable diazonium salts onto the QD structures surfaces provides a direct approach to prove the above concepts. The InAs/GaAs QD structures used in this work consist of a layer of surface InAs QDs and a layer of buried InAs QDs embedded in a wider‐bandgap GaAs matrix. An enhancement in photoluminescence intensity by a factor of 3.3 from the buried QDs is achieved owing to the efficient elimination of the dangling bonds on the surface of the structures and to the decrease in non‐radiative recombination caused by their surface states. Furthermore, a narrow photoluminescence band peaking at 1620 nm with a linewidth of 49 meV corresponding to the eigenstates interband transition of the surface InAs QDs is for the first time clearly observed at room temperature, which is something that has rarely been achieved without the use of such engineered surfaces. The experimental results demonstrate that the hybrid molecule–QD systems possess a high stability, and both the surface and buried QDs are very sensitive to changes in their surficial conditions, indicating that they are excellent candidates as basic sensing elements for novel biosensor applications.  相似文献   

11.
Specific features in the formation of InAs quantum dots (QD) by MOCVD were studied in relation to the growing time or equivalent thickness of the InAs layer. TEM and photoluminescence studies have shown that, as the growing time of QDs in a GaAs matrix becomes longer, both the size and shape of the QDs are modified; namely, the aspect ratio increases. Selectively doped multilayer InGaAs/GaAs QD structures were fabricated, and photoconductivity in the IR range was studied for lateral and vertical electron transport. Under a normal incidence of light, intraband photoconductivity in the mid-IR range, 2.5–5 μm, was observed at temperatures of up to 110 K.  相似文献   

12.
Quantum dot structures: Fabrication technology and control of parameters   总被引:2,自引:0,他引:2  
Quantum dot (QD) semiconductor heterostructures for device applications are currently synthesized using the effect of spontaneous transformation of the growth surface at the initial stage of heteroepitaxy of lattice-mismatched layers. When a certain critical layer thickness is reached, the planar growth surface is transformed into an array of nanoscale islands, as was first demonstrated for an InAs/GaAs system. For various device applications, it is desirable to control the shape and size of individual QDs. This is achieved by variation of the effective thickness of the deposited InAs layer, deposition of several QD layers, the use of various matrix materials and a metamorphic buffer layer, and the addition of a small amount of nitrogen into QDs and the matrix material.  相似文献   

13.
The growth of InAs quantum dots (QDs) on GaAs (0 0 1) substrates by selective area molecular beam epitaxy (SA-MBE) with dielectric mask is investigated. The GaAs polycrystals on the mask, which is formed during growth due to low GaAs selectivity between dielectric mask and epitaxial region in MBE, strongly affect the distribution of InAs QDs on the neighbouring epitaxial regions. It is found that the GaAs polycrystalline regions strongly absorb indium during QD growth, confirmed by microscopic and optical studies. GaAs polycrystalline deposit can be reduced under low growth rate and high-temperature growth conditions. Almost no reduction in QD areal density is observed when there is minimal polycrystalline coverage of the mask.  相似文献   

14.
The dependence of properties of quantum dot (QD) arrays in an InAs/GaAs system on the InAs growth rate has been investigated theoretically and experimentally. The derived kinetic model of the formation of coherent nanoislands allows the calculation of the average size, surface density of islands, and wetting layer thickness as functions of the growth time and conditions. Optical properties of InAs/GaAs QDs have been studied for the case of two monolayers (ML) of the material deposited at different growth rates. Predictions of the theoretical model are compared with the experimental data. It is shown that with two ML of the deposited material the characteristic lateral size of QDs decreases and the thickness of the residual wetting layer increases with rising growth rate.  相似文献   

15.
This article reviews the recent progress in the growth and device applications of InAs/InP quantum dots (QDs) for telecom applications. Wavelength tuning of the metalorganic vapor-phase epitaxy grown single layer and stacked InAs QDs embedded in InGaAsP/InP (1 0 0) over the 1.55-μm region at room temperature (RT) is achieved using ultra-thin GaAs interlayers underneath the QDs. The GaAs interlayers, together with reduced growth temperature and V/III ratio, and extended growth interruption suppress As/P exchange to reduce the QD height in a controlled way. Device quality of the QDs is demonstrated by temperature-dependent photoluminescence (PL) measurements, revealing zero-dimensional carrier confinement and defect-free InAs QDs, and is highlighted by continuous-wave ground-state lasing at RT of narrow ridge-waveguide QD lasers, exhibiting a broad gain spectrum. Unpolarized PL from the cleaved side, important for realization of polarization insensitive semiconductor optical amplifiers, is obtained from closely stacked QDs due to vertical electronic coupling.  相似文献   

16.
Multilayered InAs/GaAs quantum dot (QD) heterostructures are produced by metal-organic gas phase epitaxy. The structures exhibit photoluminescence around 1.55 μm at 300 K. The specific feature of the technology is the growth of an InAs layer with an increased effective thickness d eff to form QDs, in combination with low-temperature overgrowth of the QDs with a thin (6-nm) GaAs layer and with the annelaing of defects. By X-ray diffraction analysis and PL studies, it is shown that, in a structure with the increased thickness d eff, a secondary wetting InGaAs layer is produced on top of the QD layer from the growing relaxed large-sized InAs clusters on annealing. A new mechanism of formation of large-sized QDs characterized by a large “aspect ratio” is suggested. The mechanism involves the 2D–3D transformation of the secondary InGaAs layer in the field of elastic strains in previously formed QDs. The specific feature of the array of QDs is the coexistence of three populations of different-sized QDs responsible for the multimode photoluminescence in the range from 1 to 1.6 μm. The potentialities of such structures for infrared photoelectric detectors operating in the range from 1–2.5 μm at room temperature are analyzed.  相似文献   

17.
Photoluminescence (PL) test was conducted to investigate the effect of rapid thermal annealing (RTA) on the optical performance of self-assembled InAs/GaAs quantum dots (QDs) at the temperatures of 16 and 300 K. It was found that after RTA treatment, the PL spectrum of the QDs sample had a large blue-shift and significantly broadened at 300 K. Compared with the as-grown InAs QDs sample, the PL spectral width has increased by 44.68 meV in the InAs QDs sample RTA-treated at 800 °C. The excitation power-dependent PL measurements showed that the broadening of the PL peaks of the RTA-treated InAs QDs should be related to the emission of the ground state (GS) of different-sized InAs QDs, the InAs wetting layer (WL) and the In0.15Ga0.85As strain reduction layer (SRL) in the epitaxial InAs/GaAs layers.  相似文献   

18.
Arrays of InAs quantum dot (QD) molecules in the GaAs matrix, which consist of pairs of vertically aligned InAs QDs, have been synthesized by molecular beam epitaxy. A study of the resulting structures by transmission electron microscopy demonstrated that the vertically aligned QDs are equal in size. Photoluminescence measurements revealed that the spectra of the samples under study contain bands corresponding to electronic states in QD molecules.  相似文献   

19.
报道了分子束外延生长的1.3μm多层InGaAs/InAs/GaAs自组织量子点及其室温连续激射激光器.室温带边发射峰的半高宽小于35meV,表明量子点大小比较均匀.原子力显微镜图像显示,量子点密度可以控制在(1~7)×1010cm-2范围之内,而面密度处于4×1010cm-2时有良好的光致发光谱性能.含有三到五层1. 3μm量子点的激光器成功实现了室温连续激射.  相似文献   

20.
综述了对自组装量子点形态和生长过程所做的探讨和研究。介绍了关于量子点成核和形态的热力学理论、量子点生长过程的计算机模拟及Ge/Si(001)和InAs/GaAs(001)量子点生长和形态的实验观察。鉴于InAs/GaAs(001)体系的复杂性,把对InAs量子点的观察和研究分为"微观"和"宏观"两种。微观研究对象包括量子点原子尺度上的结构、量子点表面小晶面的晶体学的精确取向等,这些性质可能受热运动的影响比较大,在一定程度上是随机的,它们代表了量子点生长行为的复杂性;宏观研究的对象是指量子点密度、纳米尺度形态等大量粒子统计意义上的集体行为,这些性质和行为可能更具有实际意义。因此作者认为,目前研究量子点生长和形态更为有效的方法应该是探寻以量子点宏观行为所表征的简单性。重点介绍中科院半导体所半导体材料重点实验室最近所做的对InAs/GaAs(001)量子点生长过程的实验观察。结果表明,在一般生长条件下(富As,500℃,0.1ML/s),InAs量子点成核和生长应该都是连续的,没有经历被普遍认为的不连续(一级)相变。按照作者的观察,把InAs量子点成核看作是连续(二级)相变更为贴切。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号