首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamometer engine tests at steady-state conditions and a wear characteristics study were carried out on an indirect-injection diesel engine with palm oil diesel (POD) and its emulsions. The POD fuel was obtained in commercial form, and its emulsions were created by mixing POD fuel to contain 5 and 10% of water by volume. Variations in the engine’s performance characteristics were determined from the results of steady-state tests carried out at fifteen selected torque-speed matrix points of the engine’s performance map. The wear characteristics tests were performed by running the engine at half throttle setting for twenty hours for each fuel system. Then a desk-top comparison study was performed between the base-line fuel system of ordinary diesel (OD), POD, and its emulsions. Promising results have been obtained. Neither the lower cetane number of POD fuel nor its emulsification with water presented obstacles to the operation of the diesel engine during a series of steady-state engine tests and the twenty-hour endurance tests. Engine performance and fuel consumption for POD and its emulsions are comparable with those of OD fuel. Accumulations of wear metal debris in crank-case oil samples were lower with POD and its emulsions than with baseline OD fuel.  相似文献   

2.
A household microwave (800W) was modified as a biodiesel reactor for continuous transethylation of waste frying palm oil. The high free fatty acid oil was simultaneously neutralized and transesterified with sodium hydroxide. With the ethanol to oil molar ratio of 12:1, 3.0% NaOH (in ethanol) and 30s residence time, the continuous conversion of waste frying palm oil to ethyl ester was over 97%. The waste palm oil biodiesel was then tested in a 100 kW diesel generator as a neat fuel (B100) and 50% blend with diesel No. 2 fuel (B50). The engine performance and emission are recorded. At the engine loads varied from 0 kW to 75 kW (at 25 kW intervals) of the maximum electrical rating, the performance of the neat and B50 are slightly lower than diesel No. 2 fuel. Emissions of NOx, CO and HC from B100 and B50 are lower than those of diesel No. 2 fuel, except that at the 75 kW engine load, where the B100 emits higher levels of NOx than the diesel No. 2 fuel.  相似文献   

3.
P.K. Devan  N.V. Mahalakshmi 《Fuel》2009,88(10):1828-1833
Engine tests have been carried out with the aim of obtaining the performance, emission and combustion characteristics of a diesel engine running on methyl ester of paradise oil (MEPS) and its diesel blends. From the emission analysis it was found that there was a significant reduction in smoke and hydrocarbon emissions by 33% and 22% respectively for MEPS 50 blend and 40% and 27% reductions for MEPS 100. However, there was an increase of 5% and 8% NOx emission for MEPS 50 and MEPS 100 respectively. Brake thermal efficiencies of MEPS and its diesel blends are slightly lower than that of std. diesel. From the engine analysis, it was found that the performance of MEPS and its diesel blends were similar to that of std. diesel.  相似文献   

4.
Pedro Benjumea  John Agudelo 《Fuel》2009,88(4):725-731
Altitude above sea level and fuel’s chemical and physical nature affect engine performance and combustion characteristics. In this work, a combustion diagnosis model including exergy analysis was applied to a turbocharged (TC) automotive diesel engine fuelled with neat palm oil biodiesel (B100) and No. 2 diesel fuel (B0). Tests were performed under steady state operating conditions, at two altitudes above sea level: 500 and 2400 m. Biodiesel fuelling and altitude had an additive effect on the advance in injection and combustion timings. The duration of the premixed combustion stage increased with altitude and decreased with biodiesel. When B100 was used, the transition between this stage and the diffusion stage was practically suppressed. As altitude increased, biodiesel fuelling led to shorter combustion duration, and higher in-cylinder pressures and fuel-air equivalence ratios. Brake thermal efficiency decreased with altitude for both fuels, but in a greater extent for B0. For all fuels and altitudes, exergy destruction rose sharply when combustion started, indicating that this process was the main source of irreversibilities. At both altitudes, the cumulative exergy destruction was higher for B100 due to its earlier and faster combustion process. Some of the results obtained in this work indicate that palm oil biodiesel fuelling can lead to a better engine performance at high altitudes.  相似文献   

5.
This study discusses the performance and combustion characteristics of a direct injection (DI) diesel engine fueled with biodiesels such as waste (frying) palm oil methyl ester (WPOME) and canola oil methyl ester (COME). In order to determine the performance and combustion characteristics, the experiments were conducted at the constant engine speed mode (1500 rpm) under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME, the engine performance slightly weakened; the combustion characteristics slightly changed when compared to petroleum based diesel fuel (PBDF). The biodiesels caused reductions in carbon monoxide (CO), unburned hydrocarbon (HC) emissions and smoke opacity, but they caused to increases in nitrogen oxides (NOx) emissions.  相似文献   

6.
Winter rape oil fuel for diesel engines: Recovery and utilization   总被引:8,自引:0,他引:8  
Although vegetable oil cannot yet be recommended as a fuel for general use, considerable progress in recovery and use of rapeseed oil (Brassica napus L.) for diesel operation has been made. Operation of a small-scale screwpress plant (40 kg/hr) was demonstrated. Maintenance of screw and end rings was a major problem. The plant has operated with a recovery efficiency of 77% and has processed 10,100 kg of seed in 230 hr. High viscosity of the rapeseed oil and its tendency to polymerize within the cylinder were major chemical and physical problems encountered. Attempts to reduce the viscosity of the vegetable oil by preheating the fuel were not successful in sufficiently increasing the temperature of the fuel at the injector to be of value. Short-term engine performance with vegetable oils as a fuel in any proportion show power output and fuel consumption to be equivalent to the diesel-fueled engines. Severe engine damage occurred in a very short time period in tests of maximum power with varying engine rpm. Additional torque tests with all blends need to be conducted. A blend of 70/30 winter rape and No. 1 diesel has been used successfully to power a small single-cylinder diesel engine for 850 hr. No adverse wear, effect on lubricating oil or effect on power output were noted. Approved as Paper No. 8237 of the Idaho Agricultural Experiment Station.  相似文献   

7.
Results of performance, emission and tribological evaluations of palm oil methyl ester and its blends with conventional diesel in an automobile diesel engine test bed are presented. Polymerization and carbon deposits on the fuel injector were monitored. CO, CO2, O2, combustion efficiency and temperature of exhaust gases were also measured. Palm oil methyl ester and its blends have great potential as alternative diesel fuel. Performance and exhaust gas emission for palm oil methyl ester and its blends with conventional diesel are comparable with those of conventional diesel fuel. Palm oil methyl ester does not pose a severe environmental problem and will not deteriorate engine and bearing components.  相似文献   

8.
R.D. Misra  M.S. Murthy 《Fuel》2011,90(7):2514-2518
Soapnut (Sapindus mukorossi) oil, a nonedible straight vegetable oil was blended with petroleum diesel in various proportions to evaluate the performance and emission characteristics of a single cylinder direct injection constant speed diesel engine. Diesel and soapnut oil (10%, 20%, 30% and 40%) fuel blends were used to conduct short-term engine performance and emission tests at varying loads in terms of 25% load increments from no load to full loads. Tests were carried out for engine operation and engine performance parameters such as fuel consumption, brake thermal efficiency, and exhaust emissions (smoke, CO, UBHC, NOx, and O2) were recorded. Among the blends SNO 10 has shown a better performance with respect to BTE and BSEC. All blends have shown higher HC emissions after about 75% load. SNO 10 and SNO 20 showed lower CO emissions at full load. NOx emission for all blends was lower and SNO 40 blend achieved a 35% reduction in NOx emission. SNO 10% has an overall better performance with regards to both engine performance and emission characteristics.  相似文献   

9.
Performance of a diesel generator fuelled with palm oil   总被引:1,自引:0,他引:1  
Pure palm oil may be employed in diesel engines as an alternative fuel. Engine performance and emissions were influenced by basic differences between diesel fuel and palm oils such as mass based heating values, viscosity, density and molecular oxygen content. The high viscosity of palm oil resulted in poor atomisation, carbon deposits, clogging of fuel lines and starting difficulties in low temperatures. When heated at 100 °C palm oil presented lower viscosity, better combustion and less deposits. Tests were conducted in a naturally aspirated MWM 229 direct injection four-stroke 70 kW diesel-generator fueslled with 100% palm oil.  相似文献   

10.
S. Bajpai 《Fuel》2009,88(4):705-711
Karanja (Pongamia pinnata) oil, a non-edible high viscosity (27.84 cSt at 40 °C) straight vegetable oil, was blended with conventional diesel in various proportions to evaluate the performance and emission characteristics of a single cylinder direct injection constant speed diesel engine. Diesel and karanja oil fuel blends (5%, 10%, 15%, and 20%) were used to conduct short-term engine performance and emission tests at varying loads (0%, 20%, 40%, 60%, 80%, and 100%). Tests were carried out over the entire range of engine operation and engine performance parameters such as fuel consumption, thermal efficiency, exhaust gas temperature, and exhaust emissions (smoke, CO, CO2, HC, NOx, and O2) were recorded. The brake specific energy consumption (BSEC), brake thermal efficiency (BTE), and exhaust emissions were evaluated to determine the optimum fuel blend. Higher BSEC was observed at full load for neat petro-diesel. A fuel blend of 10% karanja oil (KVO10) showed higher BTE at a 60% load. Similarly, the overall emission characteristics were found to be best for the case of KVO10 over the entire range of engine operation.  相似文献   

11.
P.K. Devan  N.V. Mahalakshmi 《Fuel》2009,88(5):861-867
Experimental tests have been carried out to evaluate the performance, emission and combustion characteristics of a diesel engine using Neat poon oil and its blends of 20%, 40%, and 60%, and standard diesel fuel separately. The common problems posed when using vegetable oil in a compression ignition engine are poor atomization; carbon deposits, ring sticking, etc. This is because of the high viscosity and low volatility of vegetable oil. When blended with diesel, poon oil presented lower viscosity, improved volatility, better combustion and less carbon deposit. It was found that there was a reduction in NOx emission for Neat poon oil and its diesel blends along with a marginal increase in HC and CO emissions. Brake thermal efficiency was slightly lower for Neat poon oil and its diesel blends. From the combustion analysis, it was found that poon oil-diesel blends performed better than Neat poon oil.  相似文献   

12.
在柴油机油中加入不同比例的油酸甲酯,采用变温成漆板模拟实验,研究油酸甲酯对柴油机油清净性的影响,结果表明,油酸甲酯明显加速了柴油机油氧化变质。随着油酸甲酯加入比例提高、铝板板温增加,柴油机油清净性随之变差。不同比例的油酸甲酯对不同质量等级的柴油机油清净性影响有所不同,其由大到小的顺序为10%油酸甲酯+CD 15W/40,5%油酸甲酯+CD 15W/40,CD 15W/40,10%油酸甲酯+CF-4 15W/40,5%油酸甲酯+CF-4 15W/40,CF-4 15W/40。  相似文献   

13.
Experiments were conducted to study the performance, emission and combustion characteristics of a DI diesel engine using poon oil-based fuels. In the present work, poon oil and poon oil methyl ester are tested as diesel fuels in Neat and blended forms. The blends were prepared with 20% poon oil and 40% poon oil methyl ester separately with standard diesel on a volume basis. The reductions in smoke, hydrocarbon and CO emissions were observed for poon oil methyl ester and its diesel blend along with increased NOx emission compared to those of standard diesel. However, a reduction in NOx emission and an increase in smoke, hydrocarbon and CO emissions were observed for Neat poon oil and its diesel blend compared to those of standard diesel. The 40% poon oil methyl ester blend showed a 2% increase in brake thermal efficiency compared to that of standard diesel, whereas other fuels tested showed a decreasing trend. From the combustion analysis it was found that ignition delay was shorter for all fuels tested compared to that of standard diesel. The combustion characteristics of poon oil methyl ester and its diesel blend closely followed those of standard diesel.  相似文献   

14.
Recently, bio-derived materials such as vegetable oils are significantly employed in lubricating oil formulations due to its high flash point, high lubricity, low evaporation loss, renewability, biodegradability, and eco-friendliness when compared to mineral oil. We investigated the performance of seven poly(alkyl lactate acrylate)s as viscosity modifiers in two vegetable oils, namely, coconut oil and sunflower oil, which differ in the percentage of polar compounds and degree of unsaturation. Poly(alkyl lactate acrylate)s having alkyl as hexyl to dodecyl group in different concentrations between 1 and 2 wt% were added to coconut and sunflower oil and parameters such as thickening power or Q factor, kinematic viscosity (μ), and viscosity index (VI) were calculated. The μ values at 40°C and 100°C of vegetable oils studied were lower than commercially available SAE20W40 engine oil, but the VI of coconut and sunflower oil was higher by about 22%. Value of Q factor higher than 1, indicated that these poly(alkyl lactate acrylate)s were VI improvers. VI increased with increase in the polymer concentration in both the vegetable oils. The length of the alkyl side chain of these polymers and the polarity of vegetable oil had predominant effect in determining the values of VI of vegetable oils. By using these polymer additives, VI was improved by 85.5% in coconut oil and by 61.7% in sunflower oil. Varying the concentration and alkyl group of these additives, one can largely modify the viscosity ranges enabling them to be used in different lubricating applications.  相似文献   

15.
《Fuel》2006,85(14-15):2187-2194
In this present investigation deccan hemp oil, a non-edible vegetable oil is selected for the test on a diesel engine and its suitability as an alternate fuel is examined. The viscosity of deccan hemp oil is reduced first by blending with diesel in 25/75%, 50/50%, 75/25%, 100/0% on volume basis, then analyzed and compared with diesel. Further blends are heated and effect of viscosity on temperature was studied. The performance and emission characteristics of blends are evaluated at variable loads of 0.37, 0.92, 1.48, 2.03, 2.58, 3.13 and 3.68 kW at a constant rated speed of 1500 rpm and results are compared with diesel. The thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC) are well comparable with diesel, and emissions are a little higher for 25% and 50% blends. At rated load, smoke, carbon monoxide (CO), and unburnt hydrocarbon (HC) emissions of 50% blend are higher compared with diesel by 51.74%, 71.42% and 33.3%, respectively. For ascertaining the validity of results obtained, pure deccan hemp oil results are compared with results of jatropha and pongamia oil for similar works available in the literature and were well comparable. From investigation it has been established that, up to 25% of blend of deccan hemp oil without heating and up to 50% blend with preheating can be substituted for diesel engine without any engine modification.  相似文献   

16.
The use of biodiesel as an alternative in a diesel engine for extended period causes several engine operating problems such as injector coking, piston ring sticking, unfavorable pumping and spray characteristics due to the high viscosity of biodiesel compared to conventional diesel. In this study, a blend of 30% waste cooking palm oil (WCO) methyl ester, 60% diesel and 10% ethanol was selected based on stability test conducted and named as diestrol. The effect of diestrol fuel on the performance, emission and combustion characteristics of a direct injection diesel engine at varying injection pressure and timing was studied through experimental investigation. Maximum brake thermal efficiency of 31.3% was obtained at an injection pressure of 240 bar and injection timing of 25.5° bTDC. Compared to diesel, diestrol fuel showed reduction in carbon monoxide (CO), carbon dioxide (CO2) and smoke emission by 33%, 6.3% and 27.3% respectively. Diestrol fuel decreased nitric oxide (NO) emission by 4.3%, while slight increase in the levels of unburnt hydrocarbon (UHC) was observed. Diestrol fuel exhibited higher cylinder gas pressure and heat release rate compared to diesel. Minimum ignition delay of 12.7° CA was observed with diestrol fuel which was similar to diesel at same operating condition.  相似文献   

17.
P.K. Sahoo  M.K.G. Babu  S.N. Naik 《Fuel》2007,86(3):448-454
Non-edible filtered high viscous (72 cSt at 40 °C) and high acid value (44 mg KOH/gm) polanga (Calophyllum inophyllum L.) oil based mono esters (biodiesel) produced by triple stage transesterification process and blended with high speed diesel (HSD) were tested for their use as a substitute fuel of diesel in a single cylinder diesel engine. HSD and polanga oil methyl ester (POME) fuel blends (20%, 40%, 60%, 80%, and 100%) were used for conducting the short-term engine performance tests at varying loads (0%, 20%, 40%, 60%, 80%, and 100%). Tests were carried out over entire range of engine operation at varying conditions of speed and load. The brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) were calculated from the recorded data. The engine performance parameters such as fuel consumption, thermal efficiency, exhaust gas temperature and exhaust emissions (CO, CO2, HC, NOx, and O2) were recorded. The optimum engine operating condition based on lower brake specific fuel consumption and higher brake thermal efficiency was observed at 100% load for neat biodiesel. From emission point of view the neat POME was found to be the best fuel as it showed lesser exhaust emission as compared to HSD.  相似文献   

18.
Jordan relies heavily on expensive and unreliable imported oil. Therefore, this study was initiated to investigate the potential of ethyl ester used as vegetable oil (VO; biodiesel) to substitute oil-based diesel fuel. The fuels tested were several ester/diesel blends including 100% ester in addition to diesel fuel, which served as the baseline fuel. Variable-speed tests were run on all fuels on a standard test rig of a single-cylinder, direct-injection diesel engine. Tests were conducted to compare these blends with the baseline local diesel fuel in terms of engine performance and exhaust emissions. The results indicated that the blends burned more efficiently with less specific fuel consumption, and therefore, resulted in higher engine thermal efficiency. Furthermore, the blends produced less carbon monoxide and unburned hydrocarbons than diesel fuel. The 100% ester fuel and the blend of 75:25 ester/diesel gave the best performance while the 50:50 blend consistently resulted in the lowest amounts of emissions over the whole speed range tested.  相似文献   

19.
T. Leevijit  G. Prateepchaikul 《Fuel》2011,90(4):1487-1491
The performance and emissions of an indirect injection (IDI)-turbo automobile diesel engine operated with diesel and blends of degummed-deacidified mixed crude palm oil in diesel at portions of 20, 30, and 40 vol.% are examined and compared at various loads and speeds. Although fuel properties of the tested blends do not exactly meet all regulations of Thailand, they are all able to operate the engine. Comparing this with diesel, especially at full loads, shows that all blends produce the same maximum brake torque and power. A higher blending portion results in a little higher brake specific fuel consumption (+4.3% to +7.6%), a slightly lower brake thermal efficiency (-3.0% to -5.2%), a slightly lower exhaust gas temperature (−2.7% to −3.4%), and a significantly lower amount of black smoke (−30% to −45%). The level of carbon monoxide from the 20 vol.% blend is significantly lower (−70%), and the levels of nitrogen oxides from all blends are little higher.  相似文献   

20.
Methyl and ethyl soybean esters as renewable fuels for diesel engines   总被引:10,自引:0,他引:10  
The primary problems associated with using straight soybean oil as a fuel in a compression ignition internal combustion engine are caused by high fuel viscosity. Transesterification of soybean oil with an alcohol provides a significant reduction in viscosity, thereby enhancing the physical properties of the renewable fuel to improve engine performance. The ethyl and methyl esters of soybean oil with commercial diesel fuel additives revealed fuel properties that compared very well with diesel fuel, with the exception of gum formation, which manifested itself in problems with the plugging of fuel filters. Engine performance using soybean ester fuels differed little from engine performance with diesel fuel. A slight power loss combined with an increase in fuel consumption were experienced with the esters, primarily because of the lower heating value of the esters than for diesel fuel. Emissions for the 2 fuels were similar, with nitrous oxide emissions higher for the esters. Measurements of engine wear and fuel-injection system tests showed no abnormal characteristics for any of the fuels after the 200-hr tests. Engine deposits were comparable in amount, but slightly different in color and texture, with the methyl ester engine experiencing greater carbon and varnish deposits on the pistons. Presented at the American Oil Chemists’ Society meeting, Chicago, May 1983.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号