首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The effect of high-intensity pulsed electric field (HIPEF) processing parameters (electric field strength, treatment time, and polarity) on broccoli juice carotenoids, vitamin C, total phenolic (TP) content and antioxidant capacity (AC) was evaluated. Results obtained from HIPEF-processed broccoli juice were compared with those of thermally treated (90 °C/60 s) and untreated juices. HIPEF processing parameters influenced the relative content (RC) of bioactive compounds, and the relative AC (RAC). Maximum RC of lutein (121.2%), β-carotene (130.5%), TP (96.1%), vitamin C (90.1%) and RAC (5.9%) was reached between 25 and 35 kV/cm and from 2000 μs to 500 μs. The highest RAC and RC of bioactive compounds were observed in HIPEF treatments applied in bipolar mode, except for vitamin C. HIPEF-treated broccoli juice exhibited greater RC of bioactive compounds and RAC than juice treated by heat. HIPEF technology could be considered a promising option for preserving the antioxidant quality of broccoli juice.Industrial relevanceVegetable juices are becoming more and more popular because of their wide range of health-related compounds. Particularly, broccoli juice is attracting the food industry attention because it contains high amounts of vitamins, carotenoids and phenolic compounds, among other bioactive compounds. Broccoli juice requires treatment conditions that protect its microbial, nutritional and sensorial quality. HIPEF is a non-thermal technology for liquid food preservation that inactivates microorganisms and enzymes without compromising the nutritional and sensorial features of foods. Consequently, this technology could be used in the food industry as an alternative for thermal treatment to preserve the bioactive compounds present in vegetable juices, offering to consumers a healthy product.  相似文献   

2.
The effect of high-intensity pulsed electric fields (HIPEF) processes on Listeria innocua inhibition, physicochemical parameters and activity of oxidative enzymes of mango juice was evaluated to set the optimal HIPEF treatment time. Quality parameters, microbial population and bioactive compounds of HIPEF-treated (35 kV/cm, 1800 μs) and thermally treated (TT) (90 °C, 60 s) mango juices were studied and compared with those non-treated during 75 days of storage at 4 °C. HIPEF treatment for 800 μs ensured 5 log reductions of L. innocua. Polyphenoloxidase (PPO), lipoxygenase (LOX) and peroxidase (POD) residual activities were significantly reduced to 70, 53 and 44%, respectively, at treatment times of 1800 μs. Similar sensory properties compared with fresh mango juice were attained from product treated at 1800 μs. Moreover, fresh mango juice colour (L* = 38.79, h° = 106.57) was preserved after HIPEF treatment throughout storage. Moulds and yeasts and psychrophilic bacteria counts in HIPEF-treated (1800 μs) mango juice remained below 6 log cycles CFU/mL up to 2 months of refrigerated storage. The content of total phenolic compounds in those HIPEF-treated increased from 333 to 683 μg of GAE/mL from day 0 to the end of storage. Hence, the application of HIPEF may be a feasible treatment in order to ensure microbiological stability, high bioactive compound content and fresh-like characteristics of mango juice.  相似文献   

3.
4.
The effects of high-intensity pulsed electric fields (HIPEF) on oxidative enzymes and color of fresh carrot juice were studied. A response surface methodology (RSM) was used to evaluate the effect of pulse polarity (mono or bipolar mode), pulse width (from 1 to 7 μs), and pulse frequency (from 50 to 250 Hz) on color and peroxidase (POD) inactivation of carrot juice treated by HIPEF. The total treatment time and the electric field strength were set at 1,000 μs and 35 kV/cm, respectively, at a temperature below 35°C. The physicochemical characteristics of carrot juice were measured. There was a linear relationship between electrical conductivity and temperature of the carrot juice. The results showed that HIPEF-treated carrot juice at 35 kV/cm for 1,000 μs applying 6 μs pulse width at 200 Hz in bipolar mode led to 73.0% inactivation of POD. The color coordinates did not change significantly. Therefore, HIPEF was effective in POD inactivation and carrot juice color preservation.  相似文献   

5.
A response surface methodology was used to determine the combined effect of HIPEF critical processing conditions on vitamin C, anthocyanins and antioxidant capacity of strawberry juice. Keeping constant the electric field strength at 35 kV/cm and the treatment time at 1000 μs, the treatments were set at frequencies from 50 to 250 Hz, pulse width from 1 to 7 μs using monopolar or bipolar mode. A second order response function covering the whole range of experimental conditions was obtained for each health-related compound. Strawberry juice antioxidant potential was affected linearly by frequency, pulse width and pulse polarity. The quadratic term of frequency and the combined effect of frequency and pulse width were also significant. HIPEF treatments conducted at 232 Hz with bipolar pulses of 1 μs led to strawberry juices with the greatest presence of health-related compounds. The evaluation of the HIPEF critical parameters influence on health-related compounds can contribute to achieve optimal processing conditions to obtain strawberry juices with high antioxidant potential.  相似文献   

6.
The inactivation of orange juice peroxidase (POD) under high‐intensity pulsed electric fields (HIPEF) was studied. The effects of HIPEF parameters (electric field strength, treatment time, pulse polarity, frequency and pulse width) were evaluated and compared with conventional heat pasteurization. Samples were exposed to electric field strengths from 5 to 35 kV cm?1 for up to 1500 µs using square wave pulses in mono‐ and bipolar mode. Effect of pulse frequency (50–450 Hz), pulse width (1–10 µs) and electric energy on POD inactivation by HIPEF were also studied. Temperature was always below 40 °C. POD was totally inactivated by HIPEF and the treatment was more effective than thermal processing in inactivating orange juice POD. The extent of POD inactivation depended on HIPEF processing parameters. Orange juice POD inhibition was greater when the electric field strength, the treatment time, the pulse frequency and the pulse width increased. Monopolar pulses were more effective than bipolar pulses. Orange juice POD activity decreased with electric energy density input. The Weibull distribution function adequately described orange juice POD inactivation as a function of the majority of HIPEF parameters. Moreover, reduction of POD activity related to the electric field strength could be well described by the Fermi model. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
A response surface was used to establish the high-intensity pulsed electric fields (HIPEF) conditions in processing tomato juice to obtain the greatest peroxidase (POD) inactivation. Keeping constant the electric field strength at 35 kV/cm and the temperature below 35 °C, the treatments were set at pulse frequency from 50 to 250 Hz, pulse width from 1 to 7 μs and treatment time from 1000 to 2000 μs, using monopolar or bipolar mode. The effect of these parameters on POD inactivation was evaluated through a second order model that adequately fitted the experimental data (p = 0.0001), with a determination coefficient (R2) of 0.85. HIPEF treatment resulted to be more effective in bipolar than monopolar mode to reduce POD activity and the longer the treatment time, the greater the reduction on the enzyme activity. A pulse frequency of 200 Hz was enough to reach a minimum value of residual POD activity. The significant interaction term pulse frequency and treatment time was included in the model, showing that different combinations of both variables can lead to the same level of residual POD activity. The effect of pulse width was enhanced by using a bipolar mode, being feasible to maximize POD inactivation selecting pulse width higher than 5.5 μs in bipolar mode.  相似文献   

8.
Ingrid Aguiló-Aguayo 《LWT》2010,43(6):897-10043
The effects of pulse frequency (50-250 Hz), pulse width (1.0-7.0 μs) and polarity (monopolar or bipolar) of high-intensity pulsed electric field (HIPEF) treatments (35 kV/cm and 1000 μs total treatment time) on peroxidase (POD) and lipoxygenase (LOX) activities were evaluated using a response surface methodology. Second-order expressions were accurate enough to fit experimental results. HIPEF bipolar treatments resulted to be more effective than monopolar treatments in reducing POD and LOX activities. Watermelon juice LOX was more resistant to HIPEF than POD within the range of assayed conditions. HIPEF treatments set at 50 Hz for 1.0 μs pulse width could attain minimum residual POD activity values up to 10%, whereas the highest POD activity reduction was reached by combining high frequencies and pulse widths. Thus, POD could be totally inactivated by applying 7.0-μs bipolar pulses at frequencies higher than 114 Hz. In addition, the effect of frequency on the LOX activity was highly affected by the pulse width of the treatment. Thus, treatments conducted at 220 Hz with bipolar pulses of 1.0 μs led to the lowest residual LOX activity (50%).  相似文献   

9.
High-intensity pulsed electric fields (HIPEF) were applied to strawberry juice to study the feasibility of inactivating polyphenoloxidase (PPO). Response surface methodology was used to evaluate the effect of HIPEF processing, in which total treatment time (1000 to 2000 μs), pulse frequency (50 to 250 Hz), pulse width (1.0 to 7.0 μs), and polarity (monopolar or bipolar) were the controlled variables at a constant electric field of 35 kV/cm. The proposed 2nd-order response functions were accurate enough to fit experimental results. Strawberry juice PPO was strongly reduced within the range of assayed conditions. HIPEF treatments were more effective in bipolar than in monopolar mode in inactivating PPO. Treatments of longer duration resulted in reductions of the enzyme activity. Moreover, it was feasible to minimize residual PPO activity (down to 2.5%) by selecting bipolar treatments at frequencies higher than 229 Hz and pulse widths between 3.23 and 4.23 μs for a constant total treatment time of 2000 μs.  相似文献   

10.
Ingrid Aguiló-Aguayo 《LWT》2009,42(4):813-818
The effects of high-intensity pulsed electric field (HIPEF) processing (35 kV/cm for 1700 μs applying 4-μs pulses at 100 Hz in bipolar mode) on color, viscosity and PME and PG activities in strawberry juice were studied and compared to those of heat treatments (90 °C for 60 s or 30 s) through 63 days of storage. L and viscosity values of the HIPEF-processed juices were higher than those found in the thermally treated. In addition, HIPEF-treated juice exhibited lower 5-(hydroxymethyl)-2-furfural (HMF) concentration and browning index than heat-treated juices throughout storage. On the other hand, HIPEF-treated juice maintained low residual pectin methylesterase (PME) activity (13.1%) for 63 days, whereas in the case of the thermally treated, 22.2 and 48.8% was retained after 60 s and 30 s, respectively. Strawberry juice treated by HIPEF achieved lower residual polygalacturonase (PG) activity (73.3%) than those of heat-processed at 90 °C for 60 s (76.2%) or 30 s (96.8%). Thus, HIPEF could be a feasible alternative to thermal processing to minimize browning and viscosity loss in strawberry juice during storage.  相似文献   

11.
The effect of high-intensity pulsed electric field (HIPEF) treatments on polygalacturonase (PG) activity in an aqueous solution of a commercial enzyme preparation was evaluated. HIPEF treatments reduced PG activity notably. Exponentially decaying pulses of 40 and 160 µs generated by a laboratory scale device were applied in a batch processing and bipolar mode. Electric fields ranged from 5.18 to 19.39 kV/cm. The number of pulses ranged up to 400. Temperature was always below 25 °C. Maximum inactivation of PG activity (98%) required 32.4 ms HIPEF treatment at 10.28 kV/cm. PG activity depleted exponentially because of HIPEF treatments. The first order rate constants ranged from 32 to 590 µs -1 and increased exponentially with electric field intensity. PG activity decreased exponentially with input electric energy density.  相似文献   

12.
The effects of high-intensity pulsed electric fields (HIPEF) processing (35 kV/cm for 1700 μs using pulses of 4 μs at 100 Hz in bipolar mode) and thermal treatments (90 °C for 30 s or 60 s) on lipoxygenase (LOX) and β-glucosidase (β-GLUC) activities as well as on the production of volatile compounds were assessed in strawberry juice for 56 days of storage. HIPEF-treated juice kept higher residual LOX activity than heat-treated juices during the first 28 days of storage. Moreover, β-GLUC increased its initial activity just after HIPEF processing. The concentration of DMHF in HIPEF-processed strawberry juice was above those of untreated and heat-treated juices during the first 14 days of storage. On the other hand, concentrations of ethyl butanoate and 1-butanol obtained after HIPEF processing were better maintained than after thermal processing. However, thermally-treated samples showed an increase in the amount of 1-butanol beyond day 35, causing an unpleasant flavour to the product. Thus, flavour stability in HIPEF-processed strawberry juice was greater than in thermally-treated samples during storage.  相似文献   

13.
Saccharomyces cerevisiae is often associated with the spoilage of fruit juices. The purpose of this study was to evaluate the effect of high-intensity pulsed electric field (HIPEF) treatment on the survival of S. cerevisiae suspended in orange juice. Commercial heat-sterilized orange juice was inoculated with S. cerevisiae (CECT 1319) (10(8) CFU/ml) and then treated by HIPEFs. The effects of HIPEF parameters (electric field strength, treatment time, pulse polarity, frequency, and pulse width) were evaluated and compared to those of heat pasteurization (90 degrees C/min). In all of the HIPEF experiments, the temperature was kept below 39 degrees C. S. cerevisiae cell damage induced by HIPEF treatment was observed by electron microscopy. HIPEF treatment was effective for the inactivation of S. cerevisiae in orange juice at pasteurization levels. A maximum inactivation of a 5.1-log (CFU per milliliter) reduction was achieved after exposure of S. cerevisiae to HIPEFs for 1,000 micros (4-micros pulse width) at 35 kV/cm and 200 Hz in bipolar mode. Inactivation increased as both the field strength and treatment time increased. For the same electric field strength and treatment time, inactivation decreased when the frequency and pulse width were increased. Electric pulses applied in the bipolar mode were more effective than those in the monopolar mode for destroying S. cerevisiae. HIPEF processing inactivated S. cerevisiae in orange juice, and the extent of inactivation was similar to that obtained during thermal pasteurization. HIPEF treatments caused membrane damage and had a profound effect on the intracellular organization of S. cerevisiae.  相似文献   

14.
BACKGROUND: The effect of high‐intensity pulsed electric field (HIPEF) processing (35 kV cm?1 for 1500 µs using 6‐µs bipolar pulses at 200 Hz) on the antioxidant features (vitamin C, β‐carotene, total phenolic compounds and antioxidant capacity) of carrot juice as well as on peroxidase activity was investigated and compared to the observed in heat pasteurised juices (90 °C for 60 s or 30 s) having the fresh juice as a reference. RESULTS: HIPEF and heat‐treated carrot juices had higher β‐carotene and lower vitamin C contents than the untreated juices immediately after processing. The antioxidant capacity of the juices was significantly modified neither by HIPEF nor by thermal treatments. POD activity decreased drastically (≥93.3%) after processing irrespective of the treatment applied. Vitamin C and β‐carotene content decreased throughout the storage following an exponential trend (R2 = 0.801–0.984) with degradation rates between 1.7 × 10?2 and 3.5 × 10?2 day?1. Vitamin C and β‐carotene contents were better maintained in HIPEF‐treated than in heat‐pasteurised juices throughout the storage. Total phenolic content and the antioxidant capacity of the HIPEF‐treated juice did not substantially differ from that of the thermally treated juice for 56 days. CONCLUSION: HIPEF processing may help to achieve fresh‐like carrot juices with increased amounts of health‐related phytochemicals. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
The effect of high intensity pulsed electric fields (HIPEF) processing (35 kV/cm for 1500 μs in bipolar 4-μs pulses at 100 Hz, with an energy density of 8269 kJ/L) on the main bioactive compounds and antioxidant capacity of tomato juice was investigated and compared to heat pasteurization (90 °C for 1 min or 30 s) having the fresh juice as a reference. HIPEF and heat treated tomato juices showed higher lycopene and lower vitamin C levels than the untreated juice. However, no significant changes in the total phenolic content and antioxidant capacity were observed between treated and fresh juices just after processing. Lycopene, vitamin C and antioxidant capacity of both treated and untreated juices decreased exponentially during storage following a first order kinetics (R= 0.763–0.987), whereas tomato juices maintained their initial phenolic content. HIPEF-treated tomato juice maintained higher lycopene and vitamin C content than the thermally treated juices during the storage time. Hence, the application of HIPEF may be appropriate to achieve nutritious and fresh like tomato juice.

Industrial relevance

HIPEF processing can lead to tomato juice with higher nutritional value than that thermally processed. HIPEF-treated (35 kV/cm for 1500 μs with 4-μs bipolar pulses at 100 Hz, energy input of 8269 kJ/L) tomato juice shows greater lycopene, vitamin C and antioxidant capacity just after the treatment and during the storage time than heat treated (90 °C­30 s and 90 °C­60 s) tomato juice. Therefore, HIPEF technology is a feasible alternative to thermal treatment to obtain tomato juice with a high presence of health-related compounds.  相似文献   

16.
Staphylococcus aureus is an important milk-related pathogen that is inactivated by high-intensity pulsed electric fields (HIPEF). In this study, inactivation of Staph. aureus suspended in milk by HIPEF was studied using a response surface methodology, in which electric field intensity, pulse number, pulse width, pulse polarity, and the fat content of milk were the controlled variables. It was found that the fat content of milk did not significantly affect the microbial inactivation of Staph. aureus. A maximum value of 4.5 log reductions was obtained by applying 150 bipolar pulses of 8 μs each at 35 kV/cm. Bipolar pulses were more effective than those applied in the monopolar mode. An increase in electric field intensity, pulse number, or pulse width resulted in a drop in the survival fraction of Staph. aureus. Pulse widths close to 6.7 μs lead to greater microbial death with a minimum number of applied pulses. At a constant treatment time, a greater number of shorter pulses achieved better inactivation than those treatments performed at a lower number of longer pulses. The combined action of pulse number and electric field intensity followed a similar pattern, indicating that the same fraction of microbial death can be reached with different combinations of the variables. The behavior and relationship among the electrical variables suggest that the energy input of HIPEF processing might be optimized without decreasing the microbial death.  相似文献   

17.
ABSTRACT:  The influence of high-intensity pulsed electric field (HIPEF) parameters, namely, pulse frequency, pulse width, and polarity on tomato juice lipoxygenase (LOX) and hydroperoxide lyase (HPL) activities was studied using a response surface methodology. Samples were subjected to square-shaped pulses of 35 kV/cm for 1000 μs, with pulse width ranging from 1 to 7 μs at frequencies from 50 to 250 Hz, either in monopolar or bipolar mode. Tomato LOX was more resistant to HIPEF than HPL within the range of assayed conditions. An increase in frequency or pulse width resulted in a decrease of both residual LOX ( RALOX ) and HPL ( RAHPL ) activities. The lowest  RALOX  (81%) was observed when tomato juice was treated at 250 Hz for 7 μs in bipolar mode. Moreover, the same conditions led to the highest HPL activity reduction ( RAHPL  = 10%). A validation of the predictive models determined that 2nd-order expressions were accurate enough to fit the experimental results.  相似文献   

18.
19.
The influence of high-intensity pulsed electric field (HIPEF) parameters, pulse frequency, pulse width and pulse polarity in strawberry juice lipoxygenase (LOX) and β-glucosidase (β-GLUC) was studied using a response surface methodology. The studied parameters affected on both residual enzymatic activities at unchanging electric field strength of 35 kV/cm and treatment time for 1000 μs. The contour plots showed a minimum defined space where residual activity of LOX remained at 65% and 70% in monopolar and bipolar mode, respectively. Low pulse frequencies (up to 61.6 Hz) in monopolar treatments as well as pulse frequencies and widths higher than 218 Hz and 5.4 μs in bipolar treatments did not have any effect on LOX inactivation. On the other hand, the higher the pulse frequency and pulse width, the higher the β-GLUC inactivation obtained. Moreover, when the HIPEF treatment was applied in monopolar mode, an enhancement in β-GLUC activity was observed in most of the experimental range. HIPEF treatments have demonstrated adequately that can reduce activity of enzymes that are involved in the formation of desirable flavor compounds, helping processors to obtain juices that keep their fresh flavor.

Industrial relevance

High-intensity pulsed electric fields (HIPEF) have proved to be effective in the interaction of microorganisms and enzymes in juices, maintaining their quality and freshness.HIPEF juice processing has demonstrated to have some advantages with regard to conventional thermal treatment. HIPEF treatments can reduce adequately enzymes that are involved in the formation of desirable flavor or color compounds. Thus, HIPEF technology can help processors to obtain juices that keep their fresh flavor by achieving optimal inactivation of related enzymes. This would prevent the product from undesirable off-flavor formation, which in turn would result in greater acceptability by consumers.  相似文献   

20.
The effect of high-intensity pulsed electric fields (HIPEF) processing (35 kV/cm for 1,700 μs in bipolar 4-μs pulses at 100 Hz) on individual phenolic compounds (phenolic acids and flavonoids), vitamin C and antioxidant capacity of strawberry juice was evaluated and compared to heat (90 °C for 60 or 30 s) and fresh juice as a reference. Although strawberry juice underwent a substantial depletion of health-related compounds with storage time irrespective of the treatment conducted, ellagic acid was enhanced. HIPEF-treated strawberry juice maintained higher amounts of phenolic acids (ellagic and p-coumaric acid) and total anthocyanins than the thermally treated juices during the storage period. Regarding the antioxidant capacity, similar DPPH and ABTS values were obtained so that differences among pasteurized juices were non significant. HIPEF processing may be a technology as effective as thermal treatments not only to achieve safe and stable juices, but also to obtain juices with a high content of antioxidant compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号