首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epoxyeicosatrienoic acids (EETs) are potent endothelium-derived vasodilators formed from cytochrome P-450 metabolism of arachidonic acid. EETs and their diol products (DHETs) are also avidly taken up by endothelial cells and incorporated into phospholipids that participate in signal transduction. To investigate the possible functional significance of EET and DHET incorporation into cell lipids, we examined the capacity of EETs and DHETs to relax porcine coronary arterial rings and determined responses to bradykinin (which potently activates endothelial phospholipases) before and after incubating the rings with these eicosanoids. 14,15-EET and 11,12-EET (5 mumol/L) produced 75 +/- 9% and 52 +/- 4% relaxation, respectively, of U46619-contracted rings, whereas 8,9-EET and 5,6-EET did not produce significant relaxation. The corresponding DHET regioisomers produced comparable relaxation responses. Preincubation with 14,15-EET, 11,12-EET, 14,15-DHET, and 11,12-DHET augmented the magnitude and duration of bradykinin-induced relaxation, whereas endothelium-independent relaxations to aprikalim and sodium nitroprusside were not potentiated. Pretreatment with 2 mumol/L triacsin C (an inhibitor of acyl coenzyme A synthases) inhibited [3H]14,15-EET incorporation into endothelial phospholipids and blocked 11,12-EET- and 14,15-DHET-induced potentiation of relaxation to bradykinin. Exposure of [3H]14,15-EET-labeled endothelial cells to the Ca2+ ionophore A23187 (2 mumol/L) resulted in a 4-fold increased release of EET and DHET into the medium. We conclude that incorporation of EETs and DHETs into cell lipids results in potentiation of bradykinin-induced relaxation in porcine coronary arteries, providing the first evidence that incorporated EETs and DHETs are capable of modulating vascular function.  相似文献   

2.
3.
Twelve Hereford steers (average BW = 231 kg) that had previously grazed native rangeland (Range) or irrigated winter wheat pasture (Wheat) were allowed to graze locoweed-infested rangeland from April 1 to June 9, 1994 (six steers/previous grazing treatment). Relative consumption level of locoweed and other forage classes was measured as observed bites per steer. Liver biopsy and whole blood samples were obtained from each steer before and after grazing. Liver samples were analyzed for several minerals by inductively coupled plasma-atomic emission spectroscopy, and whole blood samples were analyzed for Se. Liver concentrations of Ba (P < .001), Cd (P < .001), Ca (P < .01), Cr (P < .01), Ni (P < .001), Na (P < .01), and V (P < .001) were greater and concentrations of Mn (P < .09), P (P < .01), and K (P < .07) were less in Wheat than in Range steers. Liver concentrations of Fe, Mg, S, and Zn and whole blood Se concentrations did not differ (P > .10) between the two groups. Liver concentrations of Cr (P < .04) and Mn (P < .001) were less, and Fe concentrations were greater (P < .01), in samples taken after grazing than in samples taken before grazing of locoweed-infested range. Whole blood Se concentrations decreased (P < .01) from the beginning to the end of the grazing period, but this effect was not related (P > .15) to locoweed consumption. Changes in liver concentrations of minerals were compared relative to consumption levels of all forage classes in the locoweed-infested range. Liver concentrations of Cu decreased (r2 = .45; P < .02) as the percentage of bites consumed as locoweed increased, but concentrations after grazing locoweed-infested range were still within normal ranges. Changes in liver concentrations of other minerals were not related (P > .15) to consumption of locoweed. These data indicate that previous grazing history can have significant effects on liver mineral stores and that, under our conditions, consumption of locoweed by grazing beef steers altered liver Cu concentrations. Toxic effects of locoweed consumption would likely occur before Cu deficiency would be induced by grazing locoweed-infested range; hence, supplementation of Cu would seem unlikely to alter the course of locoweed toxicosis.  相似文献   

4.
5.
The present study describes the characterization of the binding properties and autoradiographic distribution of a new nonpeptide antagonist of neurotensin receptors, [3H]SR 142948A (2-[[5-(2,6-dimethoxyphenyl)-1-(4-(N-(3-dimethylaminopropyl)-N-methyl carbamoyl)-2-isopropylphenyl)-1H-pyrazole-3-carbonyl]-amino]-ad amantane-2-carboxylic acid, hydrochloride), in the rat brain. The binding of [3H]SR 142948A in brain membrane homogenates was specific, time-dependent, reversible and saturable. [3H]SR 142948A bound to an apparently homogeneous population of sites, with a Kd of 3.5 nM and a Bmax value of 508 fmol/mg of protein, which was 80% higher than that observed in saturation experiments with [3H]neurotensin. [3H]SR 142948A binding was inhibited by SR 142948A, the related nonpeptide receptor antagonist, SR 48692 (2-[[1-(7-chloroquinolin-4-yl)-5-(2,6-dimethoxyphenyl)-1H-pyrazole -3-carbonyl]amino]-adamantane-2-carboxylic acid) and neurotensin. Saturation and competition studies in the presence or absence of the histamine H1 receptor antagonist, levocabastine, revealed that [3H]SR 142948A bound with similar affinities to both the levocabastine-insensitive neurotensin NT1 receptors (20% of the total binding population) and the recently cloned levocabastine-sensitive neurotensin NT2 receptors (80% of the receptors) (Kd = 6.8 and 4.8 nM, respectively). The regional distribution of [3H]SR 142948A binding in the rat brain closely matched the distribution of [125I]neurotensin binding. In conclusion, these findings indicate that [3H]SR 142948A is a new potent antagonist radioligand which recognizes with high affinity both neurotensin NT1 and NT2 receptors and represents thus an excellent tool to study neurotensin receptors in the rat brain.  相似文献   

6.
1. The effects of endothelin-1 (ET-1) were studied in bovine oviductal arteries and compared to those of noradrenaline (NA) and high K+ (K+). The influence of endothelium, the receptor subtypes involved, and the mechanisms of Ca2+ mobilization were assessed. 2. ET-1 (0.1-300 nM) induced concentration-dependent contractions with a potency of 10(3) and 10(2) times higher than NA (0.1 microM-0.1 mM) and K+ (9.5-119 mM), respectively. Removal of endothelium or NG-nitro-L-arginine (L-NOARG, 0.1 mM) pretreatment did not affect responses to either ET-1 or K+, whereas the NA response was significantly increased. Indomethacin (1 microM) had no effect on either of these agonists. 3. The rank order of potency for the ET isopeptides was: ET-1 = ET-2 > ET-3. The ETA receptor-selective agonist, sarafotoxin 6c (S6c), had no effect. The ETA receptor-selective antagonist, BQ-123, showed a competitive antagonism on the ET-1 response (pA2 value of 6.58 +/- 0.01), whereas contractions to ET-3 were completely abolished by BQ-123 at 0.1 microM. 4. Concentration-response curves to both ET-1 and NA were shifted to the right and their maximum response reduced to approximately 56% and 65% of controls, respectively, under 30 min of incubation in Ca(2+)-free solution, whereas responses to K+ were almost abolished by this treatment. Contractions to both NA (30 microM) and ET-1 (30 nM) were maximally inhibited after 10 min of extracellular Ca2+ deprivation. 5. Contractions to ET-1 were more potently inhibited by nickel (Ni2+, 0.3 mM), whereas nifedipine (1 microM) and cadmium (Cd2+, 0.1 mM) induced only a slight effect. In contrast, opposite effects were found for both NA and K+. 6. Treatment with ryanodine (100 microM) and caffeine (10 mM) in Ca(2+)-free solution reduced the tension measured 5 min after NA (30 microM) and ET-1 (30 nM) addition, but the sustained response (tension at 25 min) remained unaffected. 7. Calphostin C (1 microM), a specific protein kinase C (PKC) inhibitor, reduced the maximum contractile response to ET-1 by about 50% without significantly affecting its pD2 value. 8. These results suggest that ET-1 acts in bovine oviductal arteries by directly activating a homogenous population of ETA receptors in smooth muscle, without endothelial modulation. Several Ca2+ activation mechanisms seem to be involved in the contractile action of the peptide, including: (1) extracellular Ca2+ entrance through Ni(2+)-sensitive and L-type Ca2+ channels; (2) intracellular Ca2+ release from a ryanodine-sensitive Ca2+ store; and (3) sensitization of the contractile machinery to Ca2+ via PKC.  相似文献   

7.
Capacitative Ca2+ entry and the regulation of smooth muscle tone   总被引:1,自引:0,他引:1  
In many non-excitable cells, activation of phospholipase C-linked receptors results in a biphasic increase in the cytosolic Ca2+ concentration; an initial transient increase, owing to the release of Ca2+ from the endoplasmic/sarcoplasmic reticulum (ER/SR), is followed by a much smaller but sustained elevation, which often involves capacitative Ca2+ entry, where depletion of Ca2+ within the ER signals the opening of store-operated Ca2+ channels in the plasma membrane. However, in excitable cells such as smooth muscle, the role of capacitative Ca2+ entry is less clear and the main Ca2+ entry mechanisms responsible for sustained cellular activation have been considered to be either voltage-operated or receptor-operated Ca2+ channels. Although store-regulated Ca2+ entry was known to occur following agonist activation of smooth muscle, it was believed to be important only for the re-filling of the depleted SR and not as a source of activator Ca2+ for the contractile mechanisms. Here, Alan Gibson, Ian McFadzean, Pat Wallace and Christopher Wayman review recent evidence that capacitative Ca2+ entry might indeed be important for the regulation of smooth muscle tone, and that it might provide an important for pharmacological intervention.  相似文献   

8.
Mesangial cells are smooth muscle-like pericytes that abut and surround the filtration capillaries within the glomerulus. Studies of the fine ultrastructure of the glomerulus show that the mesangial cell and the capillary basement membrane form a biomechanical unit capable of regulating filtration surface area as well as intraglomerular blood volume. Structural and functional studies suggest that mesangial cells regulate filtration rate in both a static and dynamic fashion. Mesangial excitability enables a homeostatic intraglomerular stretch reflex that integrates an increase in filtration pressure with a reduction in capillary surface area. In addition, mesangial tone is regulated by diverse vasoactive hormones. Agonists, such as angiotensin II, contract mesangial cells through a signal transduction pathway that releases intracellular stores of Ca2+, which subsequently activate nonselective cation channels and Cl- channels to depolarize the plasma membrane. The change in membrane potential activates voltage-gated Ca2+ channels, allowing Ca2+ cell entry and further activation of depolarizing conductances. Contraction and entry of cell Ca2+ are inhibited only when Ca2+-activated K+ channels (BK(Ca)) are activated and the membrane is hyperpolarized toward the K+ equilibrium potential. The mesangial BK(Ca) is a weak regulator of contraction in unstimulated cells; however, the gain of the feedback is increased by atrial natriuretic peptide, nitric oxide, and the second messenger cGMP, which activates protein kinase G and decreases both the voltage and Ca2+ activation thresholds of BK(Ca) independent of sensitivity. This enables BK(Ca) to more effectively counter membrane depolarization and voltage-gated Ca2+ influx. After hyperpolarizing the membrane, BK(Ca) rapidly inactivates because of dephosphorylation by protein phosphatase 2A. Regulation of ion channels has been linked casually to hyperfiltration during early stages of diabetes mellitus. Determining the signaling pathways controlling the electrophysiology of glomerular mesangial cells is important for understanding how glomerular filtration rate is regulated in health and disease.  相似文献   

9.
10.
The effects of chylomicrons and chylomicron remnants on endothelium-dependent relaxation of rat aorta were studied in vitro. Chylomicrons and chylomicron remnants were prepared in vivo. Aortic rings were incubated with the lipoproteins for 45 min before the vessels were constricted with phenylephrine and concentration relaxation response curves constructed to carbachol, ATP, A23187 and S-nitroso-N-acetylpenicillamine. Maximum % relaxations to carbachol were significantly reduced by both chylomicrons and chylomicron remnants but responses to ATP and S-nitroso-N-acetylpenicillamine were unaffected. In addition, chylomicrons significantly inhibited A23187-induced relaxation, causing an increase in the EC50 value. Chylomicron remnants cause selective inhibition of carbachol-induced relaxation suggesting an action at the receptor or G protein-coupled component of the receptor-mediated activation of the L-arginine-nitric oxide pathway. Chylomicrons appear to be less selective in their inhibition of the endothelium-dependent relaxation. This study demonstrates that lipoprotein particles of dietary origin may cause endothelial cell dysfunction.  相似文献   

11.
Contraction of the guinea pig taenia caeci is mediated by muscarinic M3 receptors; however, they comprise only 30% of the muscarinic receptors present. This study investigated the role of the predominant M2 receptor population in contractions and possible second messengers involved after M3 receptors were selectively alkylated by 4-DAMP mustard [N-(2-chloroethyl)-4-piperidinyldiphenylacetate] (60 nM) in the presence of otenzepad (AF-DX 116; 1 microM). Concentration-response curves to oxotremorine-M (oxo-M) in the presence of histamine and isoprenaline were performed in the presence of otenzepad (1 and 3 microM), resulting in a mean apparent pK(B) of 6.49, indicative of an M2 response. As the taenia has intrinsic tone, precontraction with histamine was not necessary and, therefore, in some experiments only isoprenaline was included. In these studies, an M3 response to oxo-M was observed, as the mean apparent pK(B) for otenzepad was 5.89. To investigate protein kinase C (PKC) involvement in the M2 response following M3 inactivation, the inhibitor chelerythrine (1 microM) was included with histamine and isoprenaline in the absence and presence of otenzepad. The oxo-M concentration-response curve was shifted by otenzepad with an apparent pK(B) value of 6.05, a value significantly different from that seen in the absence of chelerythrine (P < 0.05). These results suggest that activation of PKC by a spasmogen such as histamine is necessary to see an M2 response following M3 receptor inactivation.  相似文献   

12.
OBJECTIVES: Experiments were designed to determine whether coronary endothelial dysfunction after cardiac global ischemia and reperfusion could be prevented by warm blood cardioplegic solution. BACKGROUND: The coronary endothelium produces endothelium-derived relaxing factor (EDRF) to prevent vasospasm and thrombosis. After ischemia and reperfusion, endothelium-dependent relaxation (EDR) is diminished as a result of G-protein dysfunction. METHODS: Dogs were exposed to extracorporeal circulation in 37 degrees C (group 1) or 28 degrees C (groups 2 and 3). The heart was ischemic for 120 min while continuous warm blood cardioplegic solution (group 1) or intermittent cold (4 degrees C) crystalloid cardioplegic solution was not used in group 3 animals. The heart was then allowed to function for 60 min of reperfusion. RESULTS: Endothelium-derived relaxation in response to acetylcholine, adenosine diphosphate and sodium fluoride of the coronary rings of group 1 was significantly different from that of groups 2 and 3 but was not significantly different from that of group 4. In contrast, EDR in response to the receptor-independent calcium ionophore agonist A23187 was not significantly different between the four groups. Scanning electron microscopic studies showed that platelet adhesion and aggregation, area of microthrombi, disruption of endothelial cells and separation of the intercellular junction could be found in coronary segments of groups 2 and 3 but not in vessels of groups 1 and 4. CONCLUSIONS: These experiments suggest that cardiac global ischemia and reperfusion impair receptor-mediated release of EDRF from the coronary endothelium with G-protein dysfunction. This type of coronary endothelial dysfunction can be prevented by continuous anterograde infusion of warm blood cardioplegic solution during global ischemia.  相似文献   

13.
The endothelial cells of the vascular system are responsible for many biological activities that maintain vascular homeostasis. Responding to a variety of chemical and physical stimuli, the endothelium elaborates a host of vasoactive agents. One of these agents, endothelium-derived relaxing factor, now accepted as nitric oxide, influences both cellular constituents of the blood and vascular smooth muscle. A principal intracellular target for nitric oxide is guanylate cyclase, which, when activated, increases the intracellular concentration of cyclic guanosine monophosphate, which in turn activates protein kinase G. Acting by this pathway, nitric oxide induces relaxation of vascular smooth muscle and inhibits platelet activation and aggregation. Derangements in endothelial production of nitric oxide are implicated as both cause and consequence of vascular diseases, including hypertension, atherosclerosis, and coronary artery disease.  相似文献   

14.
The influence of excitatory transmission on postsynaptic structure is well established in developing animals, but little is known about the role of synaptic inhibition. We addressed this issue in developing gerbils with two manipulations designed to decrease glycinergic transmission in an auditory nucleus, the lateral superior olive (LSO), before the onset of sound-evoked activity. First, contralateral cochlear ablation functionally denervated the glycinergic pathway from the medial nucleus of the trapezoid body (MNTB) to the LSO, while leaving the excitatory pathway intact. Second, continuous release of a glycine receptor antagonist, strychnine (SN), was used to decrease transmission. The strength of excitatory and inhibitory synapses was examined with whole-cell recordings from LSO neurons in a brain-slice preparation. The percentage of LSO neurons exhibiting MNTB-evoked IPSPs was reduced in both ablated and SN-treated animals. In those neurons displaying IPSPs, the amplitude was significantly reduced. This decrease was accompanied by an 8 mV depolarization in the IPSP equilibrium potential. In contrast, the ipsilaterally evoked EPSPs were of unusually long duration in experimental animals. These long-duration EPSPs were significantly shortened by hyperpolarizing the neuron to -90 mV or exposing them to aminophosphonopentanoic acid (AP-5), an NMDA receptor antagonist. Membrane hyperpolarization and AP-5 had little effect in control neurons. In addition, LSO neurons from ablated or SN-treated animals displayed broad rebound depolarizations after membrane hyperpolarization, and these were abolished in the presence of Ni2+. Because both cochlear ablation and SN-rearing were initiated before the onset of sound-evoked activity, the results suggest that spontaneous glycinergic transmission influences the development of postsynaptic properties, including the IPSP reversal potential, NMDA receptor function, and a Ca2+ conductance.  相似文献   

15.
The induction of apoptosis by ultraviolet (UV) radiation and other DNA damaging agents plays a critical role in monitoring the accumulation of genetic damage and the suppression of tumor development. We hypothesize that UVA and UVB induce apoptosis by modulating balances between p53 and/or bcl-2 genes. Using MCF-7 cells that express both wild-type P53 and Bcl-2 proteins, we demonstrated that UVA and UVB induced apoptosis through regulating expression of apoptosis promoting or inhibiting genes. UVA induced immediate apoptosis and downregulated bcl-2 expression. Bcl-2 expression was reduced by approximately 40% at 4 h post-150 kJ UVA irradiation per m2 with a maximum downregulation (over 70%) at 24 h. The dose-response studies revealed that significant reduction of bcl-2 expression was observed at UVA doses ranging from 50 to 200 kJ per m2; however, p53 levels were not affected by UVA. In contrast, UVB exhibited a entirely different action than UVA in that UVB substantially induced p53 expression, but had no effect on bcl-2 expression. The induction of P53 by UVB was dose and time dependent with the maximum expression at 24 h post-2 and post-4 kJ UVB irradiation per m2. Down-regulation of bcl-2 and fragmentation of DNA induced by UVA occurred earlier (approximately at 4 h) than upregulation of p53 and DNA fragmentation by UVB (12-24 h). These results suggest that UVA and UVB cause cell damage through different mechanisms and that the balances between the expression of p53 and bcl-2 may play an important role in regulating the apoptosis induced by UV irradiation.  相似文献   

16.
1. The aim of the present study was to characterize neurogenic and pharmacological responses of human penile deep dorsal vein and to determine whether the responses are mediated by nitric oxide from neural or endothelial origin. 2. Ring segments of human penile deep dorsal vein were obtained from 22 multiorgan donors during procurement of organs for transplantation. The rings were suspended in organ bath chambers for isometric recording of tension. We then studied the contractile and relaxant responses to electrical field stimulation and to vasoactive agents. 3. Electrical field stimulation (0.5-2 Hz) and noradrenaline (3 x 10(-10)-3 x 10(-5) M) caused frequency- and concentration-dependent contractions that were of greater magnitude in veins denuded of endothelium. The inhibitor of nitric oxide synthesis NG-nitro-L-arginine methyl ester hydrochloride (L-NAME, l0(-4) M) increased the adrenergic responses only in rings with endothelium. 4. In preparations contracted with noradrenaline in the presence of guanethidine (10(-6) M) and atropine (10(-6) M), electrical stimulation induced frequency-dependent relaxations. This neurogenic relaxation was prevented by L-NAME, methylene blue (3 x 10(-5) M) and tetrodotoxin (10(-6) M), but was unaffected by removal of endothelium. 5. Acetylcholine (10(-8)-3 x 10(-5) M) and substance P (3 x 10(-11) -3 x 10(-7) M) induced endothelium-dependent relaxations. In contrast, sodium nitroprusside (10(-9)-3 x 10(-5) M) and papaverine (10(-8) 3 x 10(-5) M) caused endothelium-independent relaxations. 6. The results provide functional evidence that the human penile deep dorsal vein is an active component of the penile vascular resistance through the release of nitric oxide from both neural and endothelial origin. Dysfunction in any of these sources of nitric oxide should be considered in some forms of impotence.  相似文献   

17.
1. Vasoconstrictor responses of the isolated and perfused canine epicardial coronary artery to uridine 5'-triphosphate (UTP) were analysed pharmacologically. 2. At basal perfusion pressure, UTP induced vasoconstriction in a dose-related manner and the vasoconstriction was sometimes followed by a slight vasodilatation at large doses (more than 10 nmol). The rank order of potency for vasoconstriction was UTP = UDP > ATP > TTP > or = ITP > UMP. At raised perfusion pressure by 20 mM KCl, the vasoconstriction was not changed and a small vasodilatation was induced at large doses. The rank order of potency for vasodilatation was induced at large doses. The rank order of potency for vasodilatation was ATP > ITP > or = UDP > UTP > or = TTP. The maximal vasodilator response to UTP was much less than that to ATP. UMP did not induce vasodilatation. 3. The P2X receptor agonist and desensitizing agent alpha, beta-methylene ATP (1 microM) and the P2 receptor antagonist suramin (100 microM) inhibited the vasoconstrictor responses to ATP but not those to UTP and UDP. The P2 receptor antagonist reactive blue 2 (30 microM) did not inhibit the vascular responses to UTP. 4. UTP (200 microM) desensitized the vasoconstrictor responses to UTP, but not either the vasodilator responses to UTP or the vasoconstrictor responses to ATP and UDP. UDP (200 microM) did not desensitize the vascular responses to UTP. 5. Preincubating the UDP stock solution and arterial preparation with hexokinase (10 and 1 uml-1, respectively) did not change the vasoconstrictor responses to UDP. 6. The Ca channel blocker diltiazem (1 microM) inhibited the vasoconstrictor responses to UTP but not those to ATP and UDP. Incubation in a Ca(2+)-free solution containing 1 mM EGTA inhibited the vascular responses to ATP, UTP and UDP. 7. Removal of the endothelium by an intraluminal injection of saponin (1 mg) inhibited the vasodilator responses to UTP. Indomethacin, a cyclo-oxygenase inhibitor (1 microM), inhibited the vasodilator responses to UTP, but NG-nitro-L-arginine, a nitric oxide synthase inhibitor (300 microM), did not have an inhibitory effect. 8. The results suggest that (1) UTP induces vasoconstriction via UTP-preferring P2Y receptors on the smooth muscle and vasodilatation via receptors different from those mediating the vasoconstriction induced by UTP and mediating the vasodilatation by ATP on the endothelium, through mainly the release of prostacyclin in the canine epicardial coronary artery; (2) UDP induces vasoconstriction via UDP-preferring P2Y receptors; and (3) L-type Ca ion channels are involved in the vasoconstriction induced by UTP, but not in that induced by UDP.  相似文献   

18.
In the presence of N omega-nitro-L-arginine and indomethacin, acetylcholine (ACh) induced endothelium-dependent relaxation in guinea pig coronary artery preconstricted with 9,11-dideoxy-9 alpha, 11 alpha-epoxymethano prostaglandin F2 alpha. Dexamethasone and arachidonyltrifluoromethyl ketone, inhibitors of phospholipase A2, and 17-octadecynoic acid, an inhibitor of cytochrome P450 epoxygenase, had no effect on the response to ACh. Although proadifen, which is used widely as an inhibitor of cytochrome P450-dependent enzymes, suppressed the ACh-induced relaxation, the drug also inhibited the relaxation induced by cromakalim, a K+ channel opener. In isolated smooth muscle cells of guinea pig coronary artery, proadifen, but not 17-octadecynoic acid, almost abolished delayed rectifier K+ current. Epoxyeicosatrienoic acids failed to relax the artery. Apamin and iberiotoxin, inhibitors of small- and large-conductance Ca(++)-activated K+ channels, respectively, did not affect the relaxation induced by ACh. A combination of charybdotoxin plus apamin, but not iberiotoxin plus apamin, abolished the response. However, the combination of charybdotoxin plus apamin had no effect on ACh-induced increase in intracellular free Ca++ concentration in endothelial cells. These results suggest that epoxyeicosatrienoic acids do not contribute to N omega-nitro-L-arginine/indomethacin-resistant relaxation induced by ACh in the guinea pig coronary artery. The present study also proposes that K+ channels on vascular smooth muscle cells, which both charybdotoxin and apamin must affect for inhibition to occur, are the target for endothelium-derived hyperpolarizing factor.  相似文献   

19.
The effects of botulinolysin (Blyn), a thiol-activated hemolysin produced by Clostridium botulinum, on contractility of rat aortic ring were studied in order to clarify an underlying mechanism of vasoconstriction by the toxin observed previously as an increase in perfusion pressure in isolated rat organs. Blyn (30 hemolytic units/ml; HU/ml) itself did not elicit any apparent change in resting tension of the ring. Contractile tension elicited by a high concentration of phenylephrine in endothelium-intact rings increased significantly after treatment with Blyn (30 HU/ml), while phenylephrine-induced contraction of endothelium-denuded rings was not influenced by toxin treatment. In rings with intact endothelium, acetylcholine (ACh)-induced relaxation was significantly inhibited after treatment with Blyn (30, 10, 1 HU/ml). In contrast, relaxation of denuded rings by sodium nitroprusside was not affected by toxin treatment (30 HU/ml). Arginine (10(-4) M) partly reversed the inhibition of ACh-induced relaxation by the toxin (1 HU/ml). Endothelium-dependent relaxation by histamine or adenosine triphosphate was also inhibited by Blyn (1 HU/ml), but the relaxation elicited by calcium ionophore A23187 was not influenced by the toxin. The results indicate that Blyn acts on endothelium and inhibits agonist-induced endothelium-dependent relaxation of blood vessels.  相似文献   

20.
Several features of ion-channel-forming colicins have been illuminated by recent revelations: its four-domain structure, the mechanism and thermodynamics of binding to the gating loop of outer membrane porins, the mechanism of translocation, competition for the transperiplasmic excursion facilitated by the Tol or Ton transperiplasmic proteins, and the formation of a waisted, funnel-shaped transmembrane channel of well-characterized shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号