首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
由于多模光纤的纤芯直径远大于单模光纤的纤芯直径,且多模先纤的数值孔径也大于单模光纤的数值孔径,因此多单模转换效率极低.为了提高多模光纤到单模光纤的耦合效率,采用自聚焦透镜对从多模光纤出射的光束进行汇聚,使其半径大小尽量与单模光纤的芯径大小相匹配,然后再利用球透镜来减小被汇聚过的光束的发散角,在不考虑各种连接损耗的前提下,通过ZEMAX来求解多模光纤到单模先纤的耦合效率.采用这种新型组合透镜耦合的方法可以极大提高多单模耦合的耦合效率,其最高耦合效率可达到38.7%.因此,这种组合透镜法是可行的.  相似文献   

2.
通过抛磨单模-多模-单模(Single mode-Multimode-Single mode,SMS)光纤结构,设计制作一种光纤折射率传感器。多模光纤选用的是纤芯直径为16μm的锗芯光纤,纤芯直径较小,使制作的传感器尺寸较小,从而在传感应用中具有较高的样品利用率。单模光纤纤芯直径为8.4μm,可确保抛磨至多模光纤纤芯附近时单模光纤的纤芯不被破坏。SMS被AB胶固定在玻璃槽内,使得侧面抛磨光纤具有很好的鲁棒性,可重复使用性。制备并侧面抛磨了锗芯光纤长度分别为0μm、23μm、70μm、690μm、2 mm的SMS光纤结构。对产生的传输光谱进行测量,发现前4个样品随着周围环境折射率的增加,谐振波长向长波长处偏移;而前3个样品的折射率测量灵敏度随着锗芯光纤长度的增加而提高。当锗芯光纤长度为70μm时,在1.333~1.367折射率区间内,灵敏度可以达到623.5 nm/RIU。然而,过长的锗芯光纤导致折射率测量灵敏度降低。当锗芯光纤长度为2 mm时,抛磨过程中激发产生了包层模,导致传输光谱复杂、不稳定,而且长波处产生了较大的插入损耗。  相似文献   

3.
针对高功率光纤激光器在实际应用过程中所面临的高效耦合及激光输出质量问题,自行设计了大模场微结构光纤的波导结构,采用集束拉丝技术制备了纤芯直径41μm、内包层数值孔径0.62、纤芯数值孔径0.05、有效模场面积约530μm2的掺镱微结构光纤。在抽运功率为35.0 W的条件下,获得的单模激光输出功率为19.1 W,斜率效率为55.2%,光束质量因子M2小于1.01。  相似文献   

4.
王凤蕊  李明中  林宏奂  王建军 《激光技术》2007,31(6):607-609,612
为了使大芯径多模双包层光纤激光器实现基模输出以抑制高功率双层光纤激光器中的非线性效应,采用将大芯径的多模双包层光纤适当弯曲进行选模使双包层光纤激光器获得单模激光输出的方法,进行了理论分析和实验验证,取得了大芯径多模双包层光纤内包层折射率、纤芯半径、光纤内传输信号光波长、光纤弯曲半径等因素对弯曲损耗及激光器输出光场模式影响的数据,并采用国产掺镱多模双包层光纤进行了弯曲选模实验,实现了多模光纤激光器的单模输出.结果表明,激光器最大输出功率达9W,斜率效率达17.3%,输出为基模.这一结果对大芯径多模双包层光纤激光器的选模是有帮助的.  相似文献   

5.
基于侧边抛磨多模光纤的高灵敏度折射率传感器   总被引:1,自引:1,他引:0  
提出一种可于生物传感的侧边抛磨多模光纤(SPMMF)折射率传感器。针对1.300~1.430折射率范围传感特性,研究了纤芯直径50.0、62.5和105.0μm的多模光纤(MMF)侧边抛磨不同深度时SPMMF折射率传感器的光谱特性和光功率传输特性。结果表明,在1.300~1.430折射率范围内,光纤纤芯直径和剩余半径(抛磨面到纤芯中心的距离)越小,传感器灵敏度越高;纤芯直径为50.0μm、剩余半径为0μm时,可以获得最高达42.23dB/RIU的灵敏度,最小分辨率为2.37×10-5RIU;纤芯直径为105.0μm、剩余半径30μm时,SPMMF折射率传感器仍有10-5 RIU量级的分辨率。  相似文献   

6.
首先从半导体激光器列阵的发光特性出发,利用楔形光纤排对大功率半导体激光器列阵光束进行耦合,最后得到一只含有19个纤芯,每个纤芯为200μm,数值孔径为0.12的大功率半导体激光器光纤耦合模块,输出功率为32.48W, 耦合效率为81.2%.  相似文献   

7.
提出一种利用多模光纤的多模干涉效应在自由空间中获得多个局域空心光(Bottle beam)的新方法。单模-多模光纤结构是一段多模光纤无偏心地连接到一段单模光纤上,光由单模光纤传输到多模光纤激发产生一系列的LP0,n 模,由于多模干涉效应在多模光纤中相互叠加,当入射到自由空间后形成了多个Bottle beam。文中对光束传输过程进行理论分析并利用Matlab 进行仿真实验, 结果表明在自由空间中可以获得系列Bottle beam。当多模光纤纤芯直径分别为45 m,60 m 和90 m 时所选择的光场段内的Bottle beam 的尺寸大小基本相同(约400 m20 m),而第一个空间暗域沿轴向两侧相对光强差值分别为0.62,0.41 和0.11,可见当多模光纤的纤芯直径越大时所得到的Bottle beam 暗域的轴向两侧光强越相近,因此也越有利于囚禁微粒。  相似文献   

8.
微纳纤芯/包层结构大模场单模聚合物光纤设计   总被引:2,自引:2,他引:0  
提出了一种微纳纤芯/包层结构大模场单模聚合物 光纤。建立了光纤结构模型,在非 弱导近似条件下,根据波导理论,分析了微纳光纤的单模和波导特性;讨论了微纳纤芯直径 、 芯/包层折射率差以及包层直径等结构参数对微纳纤芯/包层结构聚合物光纤的模场分布、有 效 模场直径等导波特性的影响。结果表明,在传输波长λ=650nm、微纳纤芯直径Dcore=172μm、包层 直径Dclad=250μm和芯/ 包层折射率差δn=0.128时,可获得有效模场直径达126.56μm和芯内能流比为10.66% 的大模场单模聚合物光纤。  相似文献   

9.
掺Yb3 双包层光子晶体光纤激光器的实验研究   总被引:5,自引:1,他引:4  
实验采用中心波长975nm的最大输功率5W的LD作泵源,掺Yb^3-双包层光子晶体作增益介质,二色镜和光纤端面构成F-P腔。光纤长6m;纤芯直径为3.9μm.对泵光的吸收系数为2300dB/m;内包层直径为200μm.大数值孔径设计(对泵光,数值孔径为0.7)。实验结果表明,在入纤泵浦功率1.73W时获得波长1.078μm、功率1.45W的单模激光,斜率效率为85.1%;模式竞争和自脉动效应是影响激光器输出稳定性能的主要因素。  相似文献   

10.
将一段纤芯直径为28. 6μm,数值孔径为0. 10的掺Yb3 +双包层光纤弯曲后可以得到基模激光输出,其输出最大功率为0. 35W,中心波长为1073nm。实验结果和理论分析结果基本一致。  相似文献   

11.
基于偏振复用技术的激光二极管光纤耦合方法   总被引:2,自引:0,他引:2  
马晓辉  万春明  史全林  徐莉  王玲  刘国军 《中国激光》2007,34(10):1343-1346
光纤耦合输出的高功率激光二极管(LD)模块作为光纤激光器的抽运源已经得到了广泛应用。为了进一步提高光纤耦合激光二极管输出功率,提出了利用激光二极管输出光束的线偏振特性,采用偏振复用技术,将两只高功率激光二极管输出光束经准直、复合、聚焦的光纤耦合方法。利用光线追迹法,分析了圆柱透镜对激光二极管发散光束的准直特性,并讨论了柱透镜的安装距离对准直性能的影响。根据激光二极管和光纤的相关参数设计了聚焦透镜组。采用这种方法将两只输出波长为980 nm的高功率激光二极管输出光束耦合进数值孔径0.22,芯径100μm的多模光纤中,当工作电流为4.5 A时,光纤激光连续输出功率为6.36 W,耦合效率大于78%。  相似文献   

12.
大功率半导体激光器阵列光束光纤耦合研究   总被引:16,自引:3,他引:13  
从半导体激光器的光参数积出发,给出了一种集光束准直、整形、聚焦及耦合的高功率半导体激光器阵列光束的光纤耦合方法。推导出了正交的两组准直微透镜阵列的面形公式;计算了准直光束的准直精度和聚焦光学系统参数。作为例子,给出一个光纤芯径为800μm,数值孔径0.37的光纤耦合高功率半导体激光器实验结果.其耦合效率大于53%。  相似文献   

13.
1 Introduction High power laser diode arrays (LDA) have many advan- tages such as small volume, long working life, high slope efficiency and high optical density, so they have many applications in medical treatment, material pro- cessing, and for the pumping source of solid laser and etc. But unfortunately, the LDA can not be easy to use directly in these fields because of their poor beam quality and extremely asymmetric divergent beams (!x≈ 5°~10°and !y≈20°~35°, for example), so it …  相似文献   

14.
对典型量子阱激光器的光束特性和光纤特性进行了简要分析,在此基础上,利用光线踪迹理论,对光纤激光器所用976 nm泵浦模块的耦合光路进行设计,并采用光学设计软件Tracepro对设计的光路进行模拟。通过对C-mount封装的单管进行耦合试验,测得90μm条宽激光器耦合到105μm芯径时,数值孔径NA=0.22楔形光纤(未镀增透膜)的耦合效率可高达92%;100μm条宽激光器耦合到105μm芯径时,NA=0.22楔形光纤(未镀增透膜)的耦合效率可达80%以上。将测量得到的结果和理论的模拟结果进行比较,分析了影响耦合效率的原因。  相似文献   

15.
新型大模场光子晶体光纤传输系统及其传输特性分析   总被引:1,自引:0,他引:1  
张银  陈明阳  张永康 《中国激光》2012,39(12):1205001-108
通过在多模光子晶体光纤的两端分别连接一根单模光子晶体光纤,对其选择合适的参数,形成一种可以实现低弯曲损耗、大模场单模传输的光纤传输系统。运用数值仿真,分析了该传输系统在模场面积、弯曲损耗、连接损耗等方面的特性。研究结果表明,多模光子晶体光纤与单模光子晶体光纤所组成的系统可实现有效的单模传输;工作波长为1064nm时,多模光子晶体光纤在直波导状态时的基模模场面积可达1593μm2;在弯曲半径低至10cm时,多模光子晶体光纤仍然可以保持低损耗传输。经过对多模光子晶体光纤结构参数的优化,其与单模光子晶体光纤的连接损耗降低至0.085dB。  相似文献   

16.
多单元半导体激光器的高亮度光纤耦合输出   总被引:3,自引:0,他引:3  
高欣  薄报学  张晶  王玉霞  李辉  曲轶 《中国激光》2007,34(11):1472-1475
设计并研制了一种多单元半导体激光器的高亮度光纤耦合输出模块.激光器芯片采用分子束外延(MBE)方法生长的宽波导、双量子阱结构AlGaAs/GaAs激光器外延材料,激光器模块采用4只准直的单条形大功率半导体激光器,器件腔长为2 mm,发光区宽度为100μm,单条形器件的连续输出功率为5.0 W,每两只单条形器件的准直输出光束经过空间合束后再通过偏振合束,实现了多单元器件输出的高光束质量功率合成,采用简单的平凸透镜实现了合束光束与100μm芯径、数值孔径(NA)0.22石英光纤的高效耦合,耦合效率高达79%,输出功率达10.17 W,光纤端面功率密度达1.0×105W/cm2.  相似文献   

17.
彭博  张海涛  闫平  巩马理 《激光技术》2009,33(5):470-472
为了实现光纤激光器和放大器系统中不同参量光纤的低损耦合,采用光纤拉锥方法来实现光纤连接。经过理论分析,在大数值孔径光纤传输到小数值孔径光纤时,采用光纤拉锥技术可以有效地提高传输功率。采用改造的大模光纤熔接机进行拉锥实验研究,精确控制拉锥时间、放电功率、步进量和步进速率可以获得不同的拉锥形状。采用光纤拉锥元件对标准单模光纤和大模场光纤进行耦合实验,得到纤芯内传输的耦合输出效率由之前的50%提高到85%,获得了低损连接效果。结果表明,熔融拉锥技术为不同光纤之间的耦合提供了一种简单实用的方式。  相似文献   

18.
基于光纤Bragg光栅的掺铒光纤激光器   总被引:7,自引:2,他引:5  
研制了基于光纤Bragg光栅的掺铒单模光纤激光器。用 980nmLD作抽运源 ,在 1 56 μm波段获得了谱线宽为 0 1nm的激光输出。最大输出光功率为 1 73mW。输出功率稳定性为± 0 .0 2dB ,波长稳定性为 0 0 5dB。阈值抽运光功率为 7mW ,斜率效率为 3%。  相似文献   

19.
付圣贵  刘晓娟 《中国激光》2008,35(s2):19-21
利用GaAs晶体作为可饱和吸收体, 实现了掺镱光子晶体光纤激光器的被动调Q输出。实验用掺杂光子晶体光纤的芯径为21 μm, 数值孔径为0.04, 在实现了大模场面积的同时, 保证了激光器的单模运转, 从而得到高光束质量的激光输出。实验使用高功率半导体激光器作为抽运源, 采用自行研制的耦合系统将抽运光耦合进入光子晶体光纤的包层中。在激光器平均输出功率为5.8 W时, 实验得到的最短输出激光脉冲为80 ns, 重复频率为6.7 kHz。  相似文献   

20.
黄榜才  张鹏  段云峰  宁鼎 《中国激光》2008,35(s2):155-157
报道了一种应用于高功率光纤放大器的侧面抽运耦合器。采用熔融拉锥工艺以及最基本的2×1耦合方式, 实现了高耦合效率、高隔离度的光纤侧面耦合器的研制。通过对多种不同光纤组合的研究, 发现采用外径125 μm, 数值孔径为0.46的无源双包层光纤做信号传输光纤和抽运耦合光纤, 可获得高达74%的抽运耦合效率; 耦合器信号光通过率为95%; 信号输入端与抽运输入端的隔离度大于50 dB; 抽运输入端对输出端反向传输光的隔离度 为20 dB。采用该侧面耦合器, 实现了输出功率达1 W的窄线宽全光纤放大器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号