首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An analog line driver for video applications is presented. Utilizing a class-AB error amplifier structure, the design achieved 1.2-V peak-to-peak output swing with better than 42-dB linearity for frequencies up to 5 MHz. An adaptive tuning scheme for output impedance matching using peak detection is used to provide uniform performance across line impedance variations. The circuit is designed in AMI 0.5-/spl mu/m CMOS technology and has a tuning range of 70-180 /spl Omega/ with a power consumption of about 26.4 mW at 75-/spl Omega/ load.  相似文献   

2.
A CMOS line driver for high-speed data communication according to the T1 and CEPT recommendations is presented. The differential output swing is 7.2 Vpp on a load of 22.8 Ω from a single 5-V supply. A novel quiescent current control scheme is used. The driver occupies an area of 6.5 mm2 using a 2-μm p-well CMOS technology  相似文献   

3.
A CMOS output stage based on a complementary common source with an original quiescent current limiting circuit is presented. The quiescent current can be varied over a wide range by means of a control current with no need to modify the transistor aspect ratios. The output stage has been coupled to a conventional complementary input stage to form a rail-to-rail buffer. A prototype with the inclusion of auxiliary pins for biasing and current monitoring purposes has been designed using the 1-/spl mu/m double-polysilicon BCD3S process of STMicroelectronics. On a single 5-V power supply, the maximum output current is 20 mA. The amplifier, biased for a total power dissipation of 1 mW, exhibits a total harmonic distortion of -58 dB at 1 kHz with 4-V peak-to-peak on a 330-/spl Omega/ load. Correct operation of the quiescent current limiting circuit has been demonstrated for a minimum supply voltage of 2.2 V.  相似文献   

4.
A phase noise cancellation technique and a charge pump linearization technique, both of which are insensitive to component errors, are presented and demonstrated as enabling components in a wideband CMOS delta-sigma fractional-N phase-locked loop (PLL). The PLL has a loop bandwidth of 460 kHz and is capable of 1-Mb/s in- loop FSK modulation at center frequencies of 2402 + k MHz for k = 0, 1, 2, ..., 78. For each frequency, measured results indicate that the peak spot phase noise reduction achieved by the phase noise cancellation technique is 16 dB or better, and the minimum suppression of fractional spurious tones achieved by the charge pump linearization technique is 8 dB or better. With both techniques enabled, the PLL achieves a worst-case phase noise of -121 dBc/Hz at 3-MHz offsets, and a worst-case in-band noise floor of -96 dBc/Hz. The PLL circuitry consumes 34.4 mA from 1.8-2.2-V supplies. The IC is realized in a 0.18-/spl mu/m mixed-signal CMOS process, and has a die size of 2.72 mm /spl times/ 2.47 mm.  相似文献   

5.
A limiting amplifier incorporates active feedback, inductive peaking, and negative Miller capacitance to achieve a voltage gain of 50 dB, a bandwidth of 9.4 GHz, and a sensitivity of 4.6 mV/sub pp/ for a bit-error rate of 10/sup -12/ while consuming 150 mW. A driver employs T-coil peaking and negative impedance conversion to achieve operation at 10 Gb/s while delivering a current of 100 mA to 25-/spl Omega/ lasers or a voltage swing of 2 V/sub pp/ to 50-/spl Omega/ modulators with a power dissipation of 675 mW. Fabricated in 0.18-/spl mu/m CMOS technology, both prototypes operate with a 1.8-V supply.  相似文献   

6.
This paper presents a simultaneous bi-directional (SBD) 4-level I/O interface for high-speed DRAMs. The data rate of 4 Gb/s/pin was demonstrated using a 500-MHz clock generator and a full CMOS rail-to-rail power swing. The power consumed by the I/O circuit was measured to be 28 mW/pin, when connected to a 10-pF load, at a 1.8-V supply voltage. The transmitter uses a 4-level push-pull linear output driver and a 4-level automatic impedance controller, achieving the reduction of driver currents and the voltage margin as large as 200 mV. The receiver employs a hierarchical sampling scheme, wherein a differential amplifier selects three out of six reference voltage levels. This scheme ensures minimized sampling power and a wide common-mode sampling range. The 6-level reference voltage for sampling is generated by the combination of the transmitter replica. The proposed I/O interface circuits are fabricated using a 0.10-/spl mu/m, 2-metal layers DRAM process, and the active area is 330 /spl times/ 66 /spl mu/m/sup 2/. It exhibits 200 mV /spl times/ 690 ps eye windows on the given channel with a 1.8-V supply voltage.  相似文献   

7.
Kim  S.K. Son  Y.-S. Cho  G.H. 《Electronics letters》2006,42(4):214-216
A new high-slew-rate CMOS buffer amplifier consuming a very small quiescent current is proposed. This buffer amplifier recursively copies the output driving current and increases the tail current of the input differential pair during slewing. Since the proposed buffer has a possible slew rate higher than 10 V//spl mu/s for a load capacitance of 1 nF almost independently of static currents as low as 1 /spl mu/A, this buffer amplifier is promising for column driver ICs of flat panel displays that require low static power consumption, high current driving capabilities, and small silicon areas.  相似文献   

8.
A 1.2-V 72-Mb double data rate 3 (DDR3) SRAM achieves a data rate of 1.5 Gb/s using dynamic self-resetting circuits. Single-ended main data lines halve the data line precharging power dissipation and the number of data lines. Clocks phase shifted by 0/spl deg/, 90/spl deg/, and 270/spl deg/ are generated through the proposed clock adjustment circuits. The latter circuits make input data sampled with an optimized setup/hold window. On-chip input termination with a linearity error of /spl plusmn/4.1% is developed to improve signal integrity at higher data rates. A 1.2-V 1.5-Gb/s 72-Mb DDR3 SRAM is fabricated in a 0.10-/spl mu/m CMOS process with five metals. The cell size and the chip size are 0.845 /spl mu/m/sup 2/ and 151.1 mm/sup 2/, respectively.  相似文献   

9.
This paper presents the design of an optical receiver analog front-end circuit capable of operating at 2.5 Gbit/s. Fabricated in a low-cost 0.35-/spl mu/m digital CMOS process, this integrated circuit integrates both transimpedance amplifier and post limiting amplifier on a single chip. In order to facilitate high-speed operations in a low-cost CMOS technology, the receiver front-end has been designed utilizing several enhanced bandwidth techniques, including inductive peaking and current injection. Moreover, a power optimization methodology for a multistage wide band amplifier has been proposed. The measured input-referred noise of the optical receiver is about 0.8 /spl mu/A/sub rms/. The input sensitivity of the receiver front-end is 16 /spl mu/A for 2.5-Gbps operation with bit-error rate less than 10/sup -12/, and the output swing is about 250 mV (single-ended). The front-end circuit drains a total current of 33 mA from a 3-V supply. Chip size is 1650 /spl mu/m/spl times/1500 /spl mu/m.  相似文献   

10.
This paper describes a novel low-power low-noise CMOS voltage-current feedback transimpedance amplifier design using a low-cost Agilent 0.5-/spl mu/m 3M1P CMOS process technology. Theoretical foundations for this transimpedance amplifier by way of gain, bandwidth and noise analysis are developed. The bandwidth of the amplifier was extended using the inductive peaking technique, and, simulation results indicated a -3-dB bandwidth of 3.5 GHz with a transimpedance gain of /spl ap/60 dBohms. The dynamic range of the amplifier was wide enough to enable an output peak-to-peak voltage swing of around 400 mV for a test input current swing of 100 /spl mu/A. The output noise voltage spectral density was 12 nV//spl radic/Hz (with a peak of /spl ap/25 nV//spl radic/Hz), while the input-referred noise current spectral density was below 20 pA//spl radic/Hz within the amplifier frequency band. The amplifier consumes only around 5 mA from a 3.3-V power supply. A test chip implementing the transimpedance amplifier was also fabricated using the low-cost CMOS process.  相似文献   

11.
A CMOS class AB power amplifier is presented in which supply-to-supply voltage swings across low-impedance loads are efficiently and readily handled. The amplifier consists of a high-gain input stage and a push-pull unity-gain amplifier output stage. The amplifier dissipates only 7 mW of DC power and delivers 36 mW of AC power to a 300-/spl Omega/ load, using standard power supplies of /spl plusmn/5.0 V. Lower impedance loads can be driven to higher power levels, providing the internal current limiting level is not exceeded.  相似文献   

12.
A 900-MHz single-pole double-throw (SPDT) switch with an insertion loss of 0.5 dB and a 2.4-GHz SPDT switch with an insertion loss of 0.8 dB were implemented using 3.3-V 0.35-/spl mu/m NMOS transistors in a 0.18-/spl mu/m bulk CMOS process utilizing 20-/spl Omega//spl middot/cm p/sup -/ substrates. Impedance transformation was used to reduce the source and load impedances seen by the switch to increase the power handling capability. SPDT switches with 30-/spl Omega/ impedance transformation networks exhibit 0.97-dB insertion loss and 24.3-dBm output P/sub 1dB/ when tuned for 900-MHz operation, and 1.10-dB insertion loss and 20.6-dBm output P/sub 1dB/ when tuned for 2.4-GHz operation. The 2.4-GHz switch is the first bulk CMOS switch which can be used for 802.11b wireless local area network applications.  相似文献   

13.
Implemented in a 0.25-/spl mu/m SiGe BiCMOS process, a highly integrated low-power transmitter IC (TxIC) is developed for wideband code-division multiple-access handset applications. Based on a digital-IF heterodyne architecture, it eliminates the external IF surface acoustic wave filter by adopting a meticulous frequency plan and a special-purpose second-order-hold D/A conversion scheme. The TxIC features a low-power high-speed D/A converter designed to drive a dominantly capacitive load. For the upconversion mixer and the RF amplifier, adaptive biases are designed to minimize the quiescent power consumption and to provide current boost only when needed. The TxIC achieves <1% EVM. It consumes 180 mW (3-V supply) for the maximum output power of +5 dBm and reduces to 120 mW during power backoff.  相似文献   

14.
An ADSL central office (CO) line driver utilizing a single 6-V supply is described. The line driver output produces a 20-V/sub ppd/ signal to deliver a 40-V/sub ppd/ swing to a 100-/spl Omega/ line. The adoption of an active termination, a dynamic supply control circuit technique, and deep n-well devices at the output stage of the line driver is key in achieving such a large voltage swing in a 0.25-/spl mu/m CMOS process. In order to ensure reliability of the output devices, the dynamic supply control algorithm is designed to activate only one lift amplifier at each signal path of the differential line driver at any given time. A transformer turns ratio of 1:2.4 ensures both reliability and optimal power dissipation in the presence of system losses. The total power dissipation of the line driver is 700 mW when discrete multitone signals with a crest factor of 15 dB were used to deliver 20.4 dBm to a 100-/spl Omega/ line.  相似文献   

15.
This letter presents a fully integrated distributed amplifier in a standard 0.18-/spl mu/m CMOS technology. By employing a nonuniform architecture for the synthetic transmission lines, the proposed distributed amplifier exhibits enhanced performance in terms of gain and bandwidth. Drawing a dc current of 45mA from a 2.2-V supply voltage, the fabricated circuit exhibits 9.5-dB pass-band gain with a bandwidth of 32GHz while maintaining good input and output return losses over the entire frequency band. With a compact layout technique, the chip size of the distributed amplifier including the testing pads is 940/spl times/860/spl mu/m/sup 2/.  相似文献   

16.
A precision operational amplifier is described which draws 12 /spl mu/A of quiescent current and can operate from a 1.6-V supply while requiring no external components such as the usual biasing resistor. The amplifier has DC characteristics comparable to the industry standard OP-07 and AC characteristics as good as currently available micropower devices. The circuit has an input voltage range and an output swing which include the negative supply to facilitate its use in battery-powered and other single-supply applications.  相似文献   

17.
A 1.5-V 100-mA capacitor-free CMOS low-dropout regulator (LDO) for system-on-chip applications to reduce board space and external pins is presented. By utilizing damping-factor-control frequency compensation on the advanced LDO structure, the proposed LDO provides high stability, as well as fast line and load transient responses, even in capacitor-free operation. The proposed LDO has been implemented in a commercial 0.6-/spl mu/m CMOS technology, and the active chip area is 568 /spl mu/m/spl times/541 /spl mu/m. The total error of the output voltage due to line and load variations is less than /spl plusmn/0.25%, and the temperature coefficient is 38 ppm//spl deg/C. Moreover, the output voltage can recover within 2 /spl mu/s for full load-current changes. The power-supply rejection ratio at 1 MHz is -30 dB, and the output noise spectral densities at 100 Hz and 100 kHz are 1.8 and 0.38 /spl mu/V//spl radic/Hz, respectively.  相似文献   

18.
A 24-GHz +14.5-dBm fully integrated power amplifier with on-chip 50-/spl Omega/ input and output matching is demonstrated in 0.18-/spl mu/m CMOS. The use of substrate-shielded coplanar waveguide structures for matching networks results in low passive loss and small die size. Simple circuit techniques based on stability criteria derived result in an unconditionally stable amplifier. The power amplifier achieves a power gain of 7 dB and a maximum single-ended output power of +14.5-dBm with a 3-dB bandwidth of 3.1 GHz, while drawing 100 mA from a 2.8-V supply. The chip area is 1.26 mm/sup 2/.  相似文献   

19.
A new class AB CMOS operational-amplifier principle is presented. A transconductance amplifier based on this principle exhibits small-signal characteristics comparable to those of a conventional OTA. It has, however, a superior current efficiency and its settling time is not slew-rate limited. The new class AB principle can also be used in an output stage with a well-defined quiescent current, a rail-to-rail output swing, and a good driving capability. A two-stage amplifier with both the input and output stages based on the new principle has been realized. It features a rail-to-rail input and output common-mode range, a gain-bandwidth of 370-kHz, a settling time of less than 5 μs independent of the applied step, and a power consumption of 247 μW. It drives a resistive load of 3 kΩ in parallel with a capacitive load of 400 pF when operated on a 2.5-V/-2.5-V power supply  相似文献   

20.
A CMOS operational amplifier capable of delivering 160 mW of power to a 100 /spl Omega/ load while only dissipating 7 mW of quiescent power is described. The amplifier consists of three stages, the last of which is a transconductance output driver. The output stage is operated class B with less than 2 percent typical THD. A method of setting crossover by ratioing current mirror loads to parallel invertors is shown. Experimental results are presented showing various nominal operating characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号