首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
研究了铸态AZ91D镁合金在等径角挤压(Equal Channel Angular Extrusion,ECAE)后的室温力学性能和微观组织特征.在力学性能方面,铸态AZ91D镁合金经过1道次ECAE变形后,室温力学性能(屈服强度、抗拉强度、延伸率、弹性模量)由86.3 MPa,146.3 MPa,1.84%,42.5...  相似文献   

2.
研究了电磁连铸AZ31镁合金沿A路径经常规等径角挤压(ECAE)和两步ECAE变形后的微观组织与力学性能.结果表明:与预挤压态相比,常规ECAE态合金随着挤压道次的增加,晶粒不断细化,伸长率不断提高,但屈服强度与抗拉强度逐渐降低;两步ECAE可以使晶粒进一步细化,伸长率、屈服强度与抗拉强度均提高.伸长率、屈服强度与抗拉...  相似文献   

3.
在应变速率为0.005~1 s~(-1)、温度200~275℃条件下,利用Instron-5500热模拟机,对经过等通道角挤压(Equal Channel Angular Extrusion,ECAE)后的AZ91D镁合金的高温压缩特性进行了研究,得到了ECAE-ed态AZ91D镁合金真实应力-应变曲线,分析了挤压温度、应变速率等对其的影响,得出本构方程的一系列常量,建立了ECAE-ed态AZ91D镁合金在高温压缩中的本构方程关系式,并与铸态AZ91D镁合金进行了对比。结果表明:热压缩过程中,ECAE-ed态AZ91D镁合金与铸态一样,流动应力随温度的升高而降低,随应变速率的升高而升高;流动应力也可以用双曲正弦函数来描述,且双曲正弦值随Zener-Hollomon参数的自然对数的升高呈线性升高;两者同为正应变速率敏感材料,但ECAE-ed态AZ91D镁合金要比铸态应变速率敏感性小,其指数从铸态的m=0.14下降为0.096,变形激活能从182.65 kJ/mol上升为227.14 kJ/mol。研究结果对AZ91D镁合金进一步塑性成形和应用具有指导意义。  相似文献   

4.
为了优化铸态Mg-6Al合金等径道角挤压的工艺参数,通过等径道角挤压实验研究了工艺参数对其性能的影响.研究表明:等径道角挤压可大幅度提高Mg-6Al合金坯料的力学性能.当Mg-6Al合金挤压1道次至4道次后,其力学性能提高较大,微观组织明显细化.随挤压温度从260℃升高至300℃,被挤压坯料的力学性能先提高后降低.当挤压路径为路径B,挤压道次为4道次,挤压温度为300℃时,Mg-6Al合金的力学性能最高,其抗拉强度为308.2 MPa,延伸率达到30.6%.  相似文献   

5.
为了推动半固态加工在镁基复合材料成形中的应用,采用液态浸渗法制备了增强体体积分数为5%的Al<,2>O<,3sf>/AZ91D复合材料,并采用等径角挤压对其实施变形.利用光学显微镜、扫描电镜和拉伸实验机分别对试样进行了组织观察和力学性能测试,并以此为基础探讨了复合材料在等径角挤压过程中的变形机制.研究表明:Al<,2>...  相似文献   

6.
采用自制的90°模具,经Bc路径在温度为300℃下研究对比了铸态及不同道次的等通道挤压(ECAP)态AZ81镁合金微观组织和力学性能.结果表明ECAP随着挤压道次的增加,AZ81镁合金显微组织和力学性能发生显著变化.当挤压到4道次,平均晶粒尺寸由原来铸态的145um细化为9.6um,拉伸断口韧窝明显增多;抗拉强度从180 MPa提高到306 MPa,延伸率和硬度分别达到15.8%和142HL.分析表明,AZ81镁合金在高温挤压过程中Mg17Al12相粒子被破碎,并部分溶入基体,$-Mg基体与%-Mg17Al12相互相阻碍其晶粒长大,获得细小晶粒组织.  相似文献   

7.
为了制备高力学性能细晶Mg-6Al合金坯料,采用金相显微镜、材料拉伸实验机等手段对Mg-6Al合金铸坯进行等径道角挤压实验研究.并利用热处理工艺对挤压后材料进行处理,研究热处理工艺参数对材料力学性能的影响规律.结果表明,Mg-6Al合金的铸坯的抗拉强度为196.4MPa,延伸率为12.6%.经过等径道角挤压的Mg-6Al合金坯料的晶粒被大大细化,其晶粒尺寸由铸坯的140μm左右细化到8μm左右.其力学性能有很大提高,抗拉强度由196.4MPa提高到308.2MPa;延伸率由12.6%提高到30.6%.等径道角挤压工艺是一种非常好的制备高力学性能、细晶Mg-6Al合金的工艺方法.固溶和人工时效热处理工艺对等径道角挤压的Mg-6Al合金坯料的强度有较大影响,对延伸率影响较小.  相似文献   

8.
为了获得等径角挤压碳纳米管增强镁基复合材料的最佳挤压温度参数,在不同温度下,采用模角为90°的模具对经退火处理后的碳纳米管增强AZ31镁基复合材料进行了一道次的等径角挤压实验.结果表明:在不同温度下,CNTs/AZ31镁基复合材料经过一道次的等通道角挤压后, 复合材料中有大量的超细晶粒出现.复合材料在220℃挤压时可以得到表面光滑的完整试样,有利于实现多道次的挤压,同时晶粒也得到了较好的细化效果.  相似文献   

9.
以AZ91镁合金为基体,用真空电阻炉10-2Pa的Ar保护气氛中熔化、973~993K精炼、金属型无氧化重力铸造工艺制备了La含量在0%~0.65%(质量分数,下同)范围的镁合金试样。通过组织结构和DSC差热分析,研究探讨了La对合金铸态组织影响与细化晶粒组织的机理。实验结果证明,La可使AZ91镁合金基体组织中长且粗大并呈网状的Mg17Al12枝晶变得短小且致密,其网状线亦由连续变成断续;La细化晶粒组织的机制为La以Al11La3的形态在固液界面富集,增大了合金的过冷度,细化了晶粒,且La含量为0.16%时晶粒尺寸可细化到40μm的水平。  相似文献   

10.
利用钨极氩弧焊(TIG)、光学显微镜和盐雾腐蚀实验以及电化学测试技术,研究了镁合金AZ91D焊接对焊缝组织及其耐蚀性的影响.实验表明:镁合金AZ91D焊缝组织为比母材晶粒细小的等轴晶粒,提高了焊缝区硬度.焊缝区耐蚀性较母材好,其腐蚀速度与热影响区接近,比母材低1倍.  相似文献   

11.
采用热挤压工艺直接热挤出AZ91D镁合金边角料,研究挤压温度对挤压成形镁合金组织和性能的影响,并讨论其断裂行为.结果表明:在450℃热挤压时,晶粒尺寸均匀,组织中已不存在原始边角料之间未打碎的结合面,边角料之间结合较好;在350~450℃之间热挤出时,AZ91D镁合金随挤压温度的升高,抗拉强度和延伸率均增加,当挤压温度...  相似文献   

12.
压铸态AZ91D镁合金搅拌摩擦焊接头微观组织研究   总被引:1,自引:0,他引:1  
采用搅拌摩擦焊工艺对4mm厚的压铸态AZ91D镁合金进行对接工艺实验,搅拌头旋转速率1500r/min,焊接速率120mm/min;使用光学显微镜和扫描电镜对焊接接头微观组织进行了研究。结果表明:焊缝外观成形美观,但内部存在贯穿型隧道状孔洞缺陷;焊核区为典型的变形-再结晶组织,为细小、均匀的等轴晶;机械-热影响区为变形-部分再结晶组织,热影响区组织形貌与母材相近但伴有轻微的长大现象;焊核区与机械-热影响区的过渡具有以下特征:在前进侧呈现"突变"特征,在后退侧呈现"渐变"特征。  相似文献   

13.
等通道转角挤压工艺(Equal Channel Angular Pressing,ECAP)是通过剧烈塑性变形改变微观组织结构生产超细晶粒材料的材料加工方法,工件变形的均匀性一直是ECAP 工艺过程中影响材料性能的主要原因之一.采用空间转换法实现了AZ31镁合金多道次ECAP挤压过程中有限元分析相关场量的准确传递,完成了四种不同挤压路径ECAP多道次挤压工艺的有限元模拟,获得了相应挤压件累积等效应变的分布规律.研究确定了经过四道次ECAP挤压以后等效应变累积最为均匀的挤压路径.通过微观组织观察和室温拉伸力学性能实验探讨了不同路径多道次ECAP挤压AZ31镁合金的组织性能变化规律.分析结果表明通过合适的变形路径可以获得细小而均匀的微观组织,当材料的应变累积均匀时,其力学性能也较好.  相似文献   

14.
挤压对AZ91铸造镁合金力学性能的影响   总被引:1,自引:1,他引:1  
对挤压变形前后的AZ91镁合金进行了微观组织和力学性能研究.结果表明:挤压成形后合金的抗拉强度和塑性均得到提高;孪晶的产生,导致挤压合金室温压缩的应力-应变曲线上有屈服平台出现;晶粒尺寸强烈影响合金的强度.室温时,挤压合金的流变强度较铸态的高,而高温压缩的强度则较铸态的低.  相似文献   

15.
Si对AZ91D镁合金显微组织与力学性能的影响   总被引:14,自引:2,他引:14  
利用光学金相显微镜OM和XRD分析了加入微量Si的AZ91D合金显微组织和相组成,测试了合金室温拉伸力学性能和硬度,利用SEM分析了合金拉伸断口形貌.结果表明,加入一定量Si后AZ91D合金组织中形成汉字状Mg2Si相,富集于固液界面前沿,阻碍α-Mg基体的自由长大,从而细化合金铸态组织;汉字状Mg2Si相的存在导致合金力学性能的降低;AZ91D合金室温拉伸断口是以解理断裂为主的脆性断裂,加入Si后,断裂常发生于α-Mg基体和汉字状Mg2Si相间的界面处.  相似文献   

16.
ECAP法制备细晶ZK60镁合金的微观组织与力学性能   总被引:3,自引:0,他引:3  
利用等通道转角挤压法(ECAP)制备出了细晶ZK60合金,通过金相组织观察,拉伸性能测试,EBSD和透射电镜(TEM)研究了不同挤压温度和挤压道次对合金组织与性能的影响.结果表明:ZK60镁合金在210~240℃温度范围内进行ECAP挤压能获得较好的晶粒细化效果;在240℃进行ECAP挤压时,随着挤压道次的增加,合金晶...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号