首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This paper presents a novel autotransformer-based 24-pulse AC-DC converter feeding vector-controlled induction motor drives (VCIMDs) for improving power quality at the point of common coupling. The DC-ripple-reinjection technique is used in achieving the pulse multiplication in a 12-pulse AC-DC converter. The design of the proposed autotransformer is given, and necessary modifications are made in it to provide the same output DC voltage as a 6-pulse diode-bridge AC-DC converter to make it suitable for retrofit applications. The proposed 24-pulse AC-DC converter is found capable of suppressing up to the 21st harmonics in the supply current along with the power-factor improvement close to unity in the wide operating range of the drive. A set of power-quality indexes at input AC mains and on DC bus for a VCIMD fed from various AC-DC converters are also given to compare their performance. A prototype of the proposed autotransformer-based 24-pulse AC-DC converter is developed, and test results are presented to validate the developed design procedure and the simulation models of this AC-DC converter under varying loads.  相似文献   

2.
This paper presents a novel configuration of an autotransformer based 18-pulse ac-dc converter for improving the power quality at the point of common coupling (PCC) in variable frequency induction motor drives (VFIMDs). The polygon based connection of autotransformer for achieving 18-pulse rectification is utilized to result in reduction in rating of the magnetics. The design of the autotransformer is carried out for an 18-pulse ac-dc converter feeding a vector controlled induction motor drive (VCIMD). Moreover, the autotransformer design is modified for making it suitable for retrofit applications, where presently a 6-pulse diode bridge rectifier is used. The effect of load variation on VCIMD is also studied and the performance of the proposed 18-pulse ac-dc converter is compared in terms of different power quality indices on both ac as well as dc side with other ac-dc converters. A laboratory prototype of the proposed autotransformer based 18-pulse ac-dc converter feeding a 10-hp induction motor drive is developed to verify the design and simulated results  相似文献   

3.
Three-phase converters using diode or silicon-controlled rectifier (SCR) are widely employed to convert the commercial AC supply to DC. Such converters inject harmonics into the power supply system and thereby distort supply system voltage waveform. A simple input current wave-shape improvement technique using a shunt-connected harmonic current compensator is presented in this work, intended to reduce the total harmonic distortion (THD) of input current of three-phase diode and SCR phase-controlled rectifiers operating with inductive loads, by matching them to the specific converter as a combined package. The compensator proposed here comprises of a three-limb voltage source converter using insulated-gate bipolar transistor, working on instantaneous current and voltage measurements of the compensator only and not of the load. The technique uses a simple feedforward control for AC source current harmonic compensation of rectifiers without monitoring the AC line currents, i.e. use of online computation. The proposed system is simulated and tested on a laboratory prototype. The measured input current THD values without additional line filters are found to be below 8.3%, which is within acceptable limits, proving that the new technique is capable of compensating predetermined current harmonics of diode or SCRs.  相似文献   

4.
A new control scheme for a single-phase bridge rectifier with three-level pulsewidth modulation is proposed to achieve high power factor and low current distortion. The main circuit consists of a diode-bridge rectifier, a boost inductor, two AC power switches, and two capacitors. According to the proposed control scheme based on a voltage comparator and hysteresis current control technique, the output capacitor voltages are balanced and the line current will follow the supply current command. The supply current command is derived from a DC-link voltage regulator and an output power estimator. The major advantage of using a three-level rectifier is that the blocking voltage of each AC power device is clamping to half of the DC-link voltage and the generated harmonics of the three-level rectifier are less than those of the conventional two-level rectifier. There are five voltage levels (0, ±VDC/2, ±VDC) on the AC side of the diode rectifier. The high power factor and low harmonic currents at the input of the rectifier are verified by software simulations and experimental tests  相似文献   

5.
This paper describes the control analysis and design of an ac-to-ac three-phase mobile utility power supply using a matrix converter capable of high-quality 50-, 60-, and 400-Hz output voltage and reduced input harmonic distortion. Instead of the traditional structure employing a diode bridge rectifier, a dc link and a pulsewidth-modulated inverter, a three-phase-to-three-phase direct ac-ac (matrix) converter has been used as the power-conditioning core of the system, working in conjunction with input and output LC low-pass filters. An optimizing control design method using a genetic algorithm approach has been used, which yields designs to minimize a cost function, taking into account transient and steady-state output voltage performance targets, together with robustness to different operative conditions and system parameters drift. Simulation and experimental tests have demonstrated that the system meets the power-quality requirements of the application.  相似文献   

6.
A novel hybrid three-phase rectifier is proposed. It is capable to achieve high input power factor (PF) and low total harmonic input currents distortion (THD/sub I/). The proposed hybrid high power rectifier is composed by a standard three-phase six-pulse diode rectifier (Graetz bridge) with a parallel connection of single-phase Sepic rectifiers in each three-phase rectifier leg. Such topology results in a structure capable of programming the input current waveform and providing conditions for obtaining high input power factor and low harmonic current distortion. In order to validate the proposed hybrid rectifier, this work describes its principles, with detailed operation, simulation, experimental results, and discussions on power rating of the required Sepic converters as related to the desired total harmonic current distortion. It is demonstrated that only a fraction of the output power is processed through the Sepic converters, making the proposed solution economically viable for very high power installations, with fast investment payback. Moreover, retrofitting to existing installations is also feasible since the parallel path can be easily controlled by integration with the existing dc-link. A prototype has been implemented in the laboratory and it was fully demonstrated to both operate with excellent performance and be feasibly implemented in higher power applications.  相似文献   

7.
In this paper, a new single-phase switching mode rectifier (SMR) for three-level pulse width modulation (PWM) is proposed to achieve high input power factor, low current harmonics, low total harmonic distortion (THD) and simple control scheme. The mains circuit of the proposed SMR consists of six power switches, one boost inductor, and two DC capacitors. The control algorithm is based on a look-up table. There are five control signals in the input of the look-up table. These control signals are used to control the power flow of the adopted rectifier, compensate the capacitor voltages for the balance problem, draw a sinusoidal line current with nearly unity power factor, and generate a three-level PWM pattern on the AC side of adopted rectifier. The advantages of using three-level PWM scheme compared with two-level PWM scheme are using low voltage stress of power switches, decreasing input current harmonics, and reducing the conduction losses. The performances of the proposed multilevel SMR are measured and shown in this paper. The high power factor and low harmonic currents at the input of the rectifier are verified by software simulations and experimental results from a laboratory prototype  相似文献   

8.
A new converter topology for a three-phase multipulse rectifier circuit is described. This converter draws almost sinusoidal currents from the ac system with very low harmonic content and typically less than 3% total harmonic distortion. The topology uses only passive components and has a lower component count than other rectifier circuits with similar performance. Two six-pulse rectifier bridges are connected in series, fed by a series connection of transformers, to form a 12-pulse system. An additional low power harmonic injection circuit enhances the performance of the circuit to obtain low harmonic current pollution levels that are comparable with those achieved from a 24-pulse rectifier. The circuit operation is explained and experimental results are presented.  相似文献   

9.
In this paper, a new method of improving the input current total harmonic distortion (THD) as well as power factor of a three-phase suppressed-link rectifier-inverter is presented. This proposed method makes use of a novel controlled diode rectifier. The technique involves the use of bidirectional switches across the front-end rectifier, and a dSPACE based intelligent control algorithm. The operation of the converter is fully analyzed and design example provided. The main feature of the topology is low cost, small size, high efficiency and simplicity, and is excellent for retrofitting front-end rectifier of existing ac drives, UPS etc.  相似文献   

10.
This paper presents analysis and design of a resonant AC/DC converter topology, suitable for use in an advanced single-phase, sine-wave voltage, high-frequency power distribution system of the type that was proposed for a 20 kHz space station primary electrical power distribution system. The converter comprises a transformer, a double-tuned resonant network comprising of series- and parallel-tuned branches, a controlled rectifier, and an output filter. Symmetrical phase control technique that generates fundamental AC current in phase with the input voltage is employed. Steady-state analysis of the converter in continuous current mode of operation is provided, and the performance characteristics presented. The proposed converter has close-to-unity rated power factor (greater than 0.98), a wide range of output voltage control (0%-100%), low total harmonic distortion in input current (less than 8%), and high conversion efficiency. Finally, selected experimental results of a bread-board converter are presented  相似文献   

11.
This paper presents an improved analysis of a novel programmable power-factor-corrected-based hybrid multipulse power rectifier (PFC-HMPR) for utility interface of power electronic converters. The proposed hybrid multipulse rectifier is composed of an ordinary three-phase six-pulse diode-bridge rectifier (Graetz bridge) with a parallel connection of single-phase switched converters in each three-phase rectifier leg. In this paper, the authors present a complete discussion about the controlled rectifiers' power contribution and also a complete analysis concerning the total harmonic distortion of current that can be achieved when the proposed converter operates as a conventional 12-pulse rectifier. The mathematical analysis presented in this paper corroborate, with detailed equations, the experimental results of two 6-kW prototypes implemented in a laboratory.  相似文献   

12.
A new passive 28-step current shaper for three-phase rectification is proposed in this paper. With a phase-shifting transformer on the AC side and six interphase transformers on the DC side, per-phase input current can be shaped into a 28-step sinusoidal waveform. The total harmonic distortion of AC input currents obtained is 6.53%, lower than one-half of that in a conventional 12-pulse converter. The transformer voltampere rating is also lowered down to one-fifth of that in a 12-pulse converter. A 2 kW experiment is performed to verify the proposed circuit.  相似文献   

13.
A new three-phase diode bridge rectifier that provides low harmonic distortion of the input currents applying current injection technique is proposed in this paper. The rectifier applies a novel passive resistance emulator consisting of four diodes and a transformer with the volt-ampere rating of 3.57% of the rectifier-rated power. Optimization of the transformer turns ratio is performed in order to minimize the input current total harmonic distortion (THD). It is shown that with the optimal turns ratio the input current THD equals 3.72%. Dependence of the input current THD on the load current is analyzed, and it is shown that at low load currents the rectifier operates in the discontinuous conduction mode with the THD of 7.79%. The analytical results are experimentally verified on a 2 kW rectifier, indicating that the input current THD lower than 8% is provided within a wide range of the load current variations applying simple circuitry.  相似文献   

14.
Existing 3φ AC-DC low-harmonic rectifiers are costly and require complex control schemes to minimize input current harmonics. Introduced here are two new classes of low cost 3φ AC-DC high power factor/low harmonic controlled rectifiers. These are derived from parent DC-DC converter topologies containing boost-type inputs and buck-type inputs. With a single active switch in addition to the diode bridge rectifier, the converters are capable of drawing a high-quality input current waveform naturally at nearly unity power factor. Thus, a simple 3φ AC-DC high power factor rectifier is obtained. Two algorithms are introduced in this paper for constructing a 3φ AC-DC high-quality rectifier. These algorithms depend on the simple switched-mode boost-type input converter and buck-type input converter modified by an input filter. For most known DC-DC converters which belong to these classes, there are corresponding 3φ AC-DC high power factor topologies, which use the same number of transistors and use six additional fast diodes. Analytical and simulation results are supplied to demonstrate the validity of the concept  相似文献   

15.
A novel rectifier topology for high power (0.5 to 10 MVA) current source based AC motor drives is proposed. This rectifier is composed of a multi-winding transformer, a multi-level diode rectifier and a modified multi-level buck converter. The rectifier produces near unity input power factor and sinusoidal input current under any operating conditions. In addition, the proposed rectifier features reliable operation and low manufacturing cost. In this paper, the operating principle of the proposed rectifier is introduced. A number of design issues are investigated, which include PWM switching patterns, input power factor and line current harmonic distortion. Some design considerations such as the effect of the line inductance discrepancy on system performance are addressed. Experiments on a 5 kVA/208V four-level prototype are carried out for verification.  相似文献   

16.
This paper describes a new low-cost three-phase AC-DC high-power/low-harmonic-controlled rectifier and its analysis, design, and performance. The circuit consists of a three-phase diode-bridge rectifier, followed by a boost stage containing only one switch and one boost inductor. The proposed converter is used to automatically draw sinusoidal input-current waveforms with high efficiency. This is achieved with discontinuous-input voltage to the rectifier and with a discontinuous-inductor-current mode of operation of the boost converter. By using a simplified single-phase model and symbolic analysis method, analytical equations are obtained and used for design  相似文献   

17.
A digitally controlled switch mode power supply based on matrix converter   总被引:3,自引:0,他引:3  
High power telecommunication power supply systems consist of a three-phase switch mode rectifier followed by a dc/dc converter to supply loads at -48 V dc. These rectifiers draw significant harmonic currents from the utility, resulting in poor input power factor with high total harmonic distortion (THD). In this paper, a digitally controlled three-phase switch mode power supply based on a matrix converter is proposed for telecommunication applications. In the proposed approach, the matrix converter directly converts the low frequency (50/60Hz, three-phase) input to a high frequency (10/20kHz, one-phase) ac output without a dc-link. The output of the matrix converter is then processed via a high frequency isolation transformer to produce -48V dc. Digital control of the system ensures that the output voltage is regulated and the input currents are of high quality under varying load conditions. Due to the absence of dc-link electrolytic capacitors, power density of the proposed rectifier is expected to be higher. Analysis, design example and experimental results are presented from a three-phase 208-V, 1.5-kW laboratory prototype converter.  相似文献   

18.
Power supply systems in telecommunication applications employ several parallel-connected AC-to-DC and DC-to-DC power converters. Such a system offers modularity, redundancy, and is easily scalable to higher power levels. Such parallel-connected systems normally consist of several single-phase power-factor-correction (PFC) stages connected to the same input utility. In this paper, a modular single-phase PFC scheme with an integrated harmonic filtering function is presented. The proposed approach demonstrates that, with suitable modifications to the PFC control, harmonic filtering capability can be added. In other words, the PFC stage can compensate for harmonics generated by other rectifier loads connected to the same AC input terminals. The paper presents an example employing three AC-DC rectifier stages with only one AC-DC rectifier stage with PFC capability. It is shown that one PFC stage with the proposed control can compensate for harmonics generated by the other two uncompensated rectifier stages. Results from a laboratory prototype system demonstrate that the overall system meets the EN 61000-3-2 harmonic limits.  相似文献   

19.
A novel, single-phase soft-switched boost AC-DC rectifier that operates with power-factor correction is proposed in this paper. The rectifier is a modified boost voltage-doubler converter well suited for low-line-input applications. It operates with fewer conduction losses and half the switch voltage stresses found in a standard boost converter. Soft switching in the converter is achieved using a zero-current-switching quasi-resonant technique. In the paper, the converter and its modes of operation are discussed and analyzed. The method of control is explained, and a design procedure is derived and then demonstrated with an example. The feasibility of the converter is shown with experimental results obtained from a prototype.  相似文献   

20.
This paper presents a control scheme for a single-phase AC-to-DC power converter with three-level pulsewidth modulation. A single-phase power-factor-correction circuit is proposed to improve the power quality. The hysteresis current control technique for a diode bridge, with two power switches is adopted to achieve a high power factor and low harmonic distortion. A control scheme is presented where the line current is driven to follow the reference sinusoidal current which is derived from the DC-link voltage regulator, the capacitor voltage balance compensator and the output power estimator. The blocking voltage of each power device is clamped to half of the DC-link voltage. The high power factor and low current total harmonic distortion are verified by computer simulations and hardware tests  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号